Step * of Lemma loop-class-memory-eq

[Info,B:Type]. ∀[X:EClass(B ─→ B)]. ∀[init:Id ─→ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E].
  (loop-class-memory(X;init)(e)
  if first(e) then init loc(e)
    if pred(e) ∈b then eclass3(X;loop-class-memory(X;init))(pred(e))
    else loop-class-memory(X;init)(pred(e))
    fi 
  ∈ bag(B))
BY
(Auto THEN MoveToConcl (-1) THEN CausalInd' THEN AutoSplit) }

1
1. Info Type
2. Type
3. EClass(B ─→ B)
4. init Id ─→ bag(B)
5. es EO+(Info)
6. E@i
7. ∀e1:E
     ((e1 < e)
      (loop-class-memory(X;init)(e1)
        if first(e1) then init loc(e1)
          if pred(e1) ∈b then eclass3(X;loop-class-memory(X;init))(pred(e1))
          else loop-class-memory(X;init)(pred(e1))
          fi 
        ∈ bag(B)))
8. ↑first(e)
⊢ loop-class-memory(X;init)(e) (init loc(e)) ∈ bag(B)

2
1. Info Type
2. Type
3. EClass(B ─→ B)
4. init Id ─→ bag(B)
5. es EO+(Info)
6. E@i
7. ¬↑first(e)
8. ∀e1:E
     ((e1 < e)
      (loop-class-memory(X;init)(e1)
        if first(e1) then init loc(e1)
          if pred(e1) ∈b then eclass3(X;loop-class-memory(X;init))(pred(e1))
          else loop-class-memory(X;init)(pred(e1))
          fi 
        ∈ bag(B)))
⊢ loop-class-memory(X;init)(e)
if pred(e) ∈b then eclass3(X;loop-class-memory(X;init))(pred(e)) else loop-class-memory(X;init)(pred(e)) fi 
∈ bag(B)


Latex:



Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (loop-class-memory(X;init)(e)
    =  if  first(e)  then  init  loc(e)
        if  pred(e)  \mmember{}\msubb{}  X  then  eclass3(X;loop-class-memory(X;init))(pred(e))
        else  loop-class-memory(X;init)(pred(e))
        fi  )


By


Latex:
(Auto  THEN  MoveToConcl  (-1)  THEN  CausalInd'  THEN  AutoSplit)




Home Index