Step
*
3
1
1
of Lemma
loop-class-memory-prior
1. Info : Type
2. B : Type
3. X : EClass(B ─→ B)
4. init : Id ─→ bag(B)
5. es : EO+(Info)@i'
6. e : E@i
7. v : B
8. ¬↑first(e)
9. e' : E
10. (e' <loc e)
11. ↓∃w:B. w ∈ loop-class-memory(X;init)(e')
12. ∀e'':E. ((e'' <loc e)
⇒ (e' <loc e'')
⇒ (¬↓∃w:B. w ∈ loop-class-memory(X;init)(e'')))
13. v ∈ loop-class-memory(X;init)(e')
14. loc(pred(e)) = loc(e) ∈ Id
15. (pred(e) < e)
16. ∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ E) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id
17. (e' < pred(e))
⊢ v ∈ loop-class-memory(X;init)(pred(e))
BY
{ ((InstHyp [⌈pred(e)⌉] (-6)⋅ THENA Auto)
THEN D (-1)
THEN BLemma `loop-class-memory-exists`⋅
THEN Auto
THEN Subst ⌈loc(pred(e)) ~ loc(e')⌉ 0⋅
THEN Auto
THEN UsingVars [`X'] (BLemma `loop-class-memory-exists`) ⋅
THEN Auto) }
Latex:
Latex:
1. Info : Type
2. B : Type
3. X : EClass(B {}\mrightarrow{} B)
4. init : Id {}\mrightarrow{} bag(B)
5. es : EO+(Info)@i'
6. e : E@i
7. v : B
8. \mneg{}\muparrow{}first(e)
9. e' : E
10. (e' <loc e)
11. \mdownarrow{}\mexists{}w:B. w \mmember{} loop-class-memory(X;init)(e')
12. \mforall{}e'':E. ((e'' <loc e) {}\mRightarrow{} (e' <loc e'') {}\mRightarrow{} (\mneg{}\mdownarrow{}\mexists{}w:B. w \mmember{} loop-class-memory(X;init)(e'')))
13. v \mmember{} loop-class-memory(X;init)(e')
14. loc(pred(e)) = loc(e)
15. (pred(e) < e)
16. \mforall{}e':E. (e' < e) {}\mRightarrow{} ((e' = pred(e)) \mvee{} (e' < pred(e))) supposing loc(e') = loc(e)
17. (e' < pred(e))
\mvdash{} v \mmember{} loop-class-memory(X;init)(pred(e))
By
Latex:
((InstHyp [\mkleeneopen{}pred(e)\mkleeneclose{}] (-6)\mcdot{} THENA Auto)
THEN D (-1)
THEN BLemma `loop-class-memory-exists`\mcdot{}
THEN Auto
THEN Subst \mkleeneopen{}loc(pred(e)) \msim{} loc(e')\mkleeneclose{} 0\mcdot{}
THEN Auto
THEN UsingVars [`X'] (BLemma `loop-class-memory-exists`) \mcdot{}
THEN Auto)
Home
Index