Step
*
1
of Lemma
map-concat-filter-lemma1
1. A : Type
2. B : Type
3. L2 : (tg:Id × (A ─→ B ─→ (Top List))) List
4. L : (Top × Id × Top) List
5. tg : Id
6. a : A
7. b : B
8. map(λx.(snd(x));L) = concat(map(λtgf.map(λx.<fst(tgf), x>;(snd(tgf)) a b);L2)) ∈ ((tg:Id × Top) List)
9. x : Top × Id × Top
10. (x ∈ filter(λms.fst(snd(ms)) = tg;L))@i
⊢ (tg ∈ map(λp.(fst(p));L2))
BY
{ (((RWO "member_filter" (-1)) THENA Auto) THEN (Reduce (-1)) THEN (D (-1))) }
1
1. A : Type
2. B : Type
3. L2 : (tg:Id × (A ─→ B ─→ (Top List))) List
4. L : (Top × Id × Top) List
5. tg : Id
6. a : A
7. b : B
8. map(λx.(snd(x));L) = concat(map(λtgf.map(λx.<fst(tgf), x>;(snd(tgf)) a b);L2)) ∈ ((tg:Id × Top) List)
9. x : Top × Id × Top
10. (x ∈ L)
11. ↑fst(snd(x)) = tg
⊢ (tg ∈ map(λp.(fst(p));L2))
Latex:
1. A : Type
2. B : Type
3. L2 : (tg:Id \mtimes{} (A {}\mrightarrow{} B {}\mrightarrow{} (Top List))) List
4. L : (Top \mtimes{} Id \mtimes{} Top) List
5. tg : Id
6. a : A
7. b : B
8. map(\mlambda{}x.(snd(x));L) = concat(map(\mlambda{}tgf.map(\mlambda{}x.<fst(tgf), x>(snd(tgf)) a b);L2))
9. x : Top \mtimes{} Id \mtimes{} Top
10. (x \mmember{} filter(\mlambda{}ms.fst(snd(ms)) = tg;L))@i
\mvdash{} (tg \mmember{} map(\mlambda{}p.(fst(p));L2))
By
(((RWO "member\_filter" (-1)) THENA Auto) THEN (Reduce (-1)) THEN (D (-1)))
Home
Index