Nuprl Lemma : max-f-class-val
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A:Type]. ∀[f:A ─→ ℤ]. ∀[X:EClass(A)]. ∀[e:E].
  (v from X with maximum f[v])(e) ~ accum_list(v,e.if f[v] <z f[X(e)] then X(e) else v fi e.X(e);≤(X)(e)) 
  supposing ↑e ∈b (v from X with maximum f[v])
Proof
Definitions occuring in Statement : 
max-f-class: (v from X with maximum f[v])
, 
es-interface-predecessors: ≤(X)(e)
, 
eclass-val: X(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
accum_list: accum_list(a,x.f[a; x];x.base[x];L)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ─→ B[x]
, 
int: ℤ
, 
universe: Type
, 
sqequal: s ~ t
Lemmas : 
accum-class-val, 
max-f-class_wf, 
assert_wf, 
in-eclass_wf, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
eclass_wf, 
event-ordering+_wf
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[X:EClass(A)].  \mforall{}[e:E].
    (v  from  X  with  maximum  f[v])(e)  \msim{}  accum\_list(v,e.if  f[v]  <z  f[X(e)]
    then  X(e)
    else  v
    fi  ;e.X(e);\mleq{}(X)(e)) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  (v  from  X  with  maximum  f[v])
Date html generated:
2015_07_20-PM-03_50_05
Last ObjectModification:
2015_01_27-PM-10_06_04
Home
Index