Step
*
of Lemma
prior-val-unique
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[T:Type]. ∀[X:EClass(T)]. ∀[e:E]. ∀[e':E(X)].
((X)'(e) = X(e') ∈ T) supposing ((¬(e' <loc prior(X)(e))) and (e' <loc e))
BY
{ ((InstLemma `prior-val-is` []⋅ THEN RepeatFor 5 (ParallelLast')) THEN Auto) }
1
1. Info : Type
2. es : EO+(Info)
3. T : Type
4. X : EClass(T)
5. e : E
6. ∀[e':E(X)]
({(↑e ∈b (X)') ∧ ((X)'(e) = X(e') ∈ T)}) supposing
((∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑e'' ∈b X))) and
(e' <loc e))
7. e' : E(X)
8. (e' <loc e)
9. ¬(e' <loc prior(X)(e))
⊢ (X)'(e) = X(e') ∈ T
2
1. Info : Type
2. es : EO+(Info)
3. T : Type
4. X : EClass(T)
5. e : E
6. ∀[e':E(X)]
({(↑e ∈b (X)') ∧ ((X)'(e) = X(e') ∈ T)}) supposing
((∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑e'' ∈b X))) and
(e' <loc e))
7. e' : E(X)
8. (e' <loc e)
⊢ prior(X)(e) ∈ E
3
1. Info : Type
2. es : EO+(Info)
3. T : Type
4. X : EClass(T)
5. e : E
6. ∀[e':E(X)]
({(↑e ∈b (X)') ∧ ((X)'(e) = X(e') ∈ T)}) supposing
((∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑e'' ∈b X))) and
(e' <loc e))
7. e' : E(X)
8. (e' <loc e)
9. ∩:¬(e' <loc prior(X)(e)). ((X)'(e) = X(e') ∈ T)
⊢ prior(X)(e) ∈ E
4
1. Info : Type
2. es : EO+(Info)
3. T : Type
4. X : EClass(T)
5. e : E
6. ∀[e':E(X)]
({(↑e ∈b (X)') ∧ ((X)'(e) = X(e') ∈ T)}) supposing
((∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑e'' ∈b X))) and
(e' <loc e))
7. e' : E(X)
8. z : (e' <loc e)
9. ∩:¬(e' <loc prior(X)(e)). ((X)'(e) = X(e') ∈ T)
⊢ prior(X)(e) ∈ E
Latex:
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[T:Type]. \mforall{}[X:EClass(T)]. \mforall{}[e:E]. \mforall{}[e':E(X)].
((X)'(e) = X(e')) supposing ((\mneg{}(e' <loc prior(X)(e))) and (e' <loc e))
By
Latex:
((InstLemma `prior-val-is` []\mcdot{} THEN RepeatFor 5 (ParallelLast')) THEN Auto)
Home
Index