Nuprl Lemma : rcvd-vote_wf
∀[V:Type]. ∀[A:Id List]. ∀[x:consensus-rcv(V;A)].  rcvd-vote(x) ∈ {b:Id| (b ∈ A)}  × ℕ × V supposing ↑rcv-vote?(x)
Proof
Definitions occuring in Statement : 
rcvd-vote: rcvd-vote(x), 
rcv-vote?: rcv-vote?(x), 
consensus-rcv: consensus-rcv(V;A), 
Id: Id, 
l_member: (x ∈ l), 
list: T List, 
nat: ℕ, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
product: x:A × B[x], 
universe: Type
Lemmas : 
false_wf, 
true_wf, 
consensus-rcv_wf, 
list_wf, 
Id_wf, 
assert_wf, 
rcv-vote?_wf
\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[x:consensus-rcv(V;A)].
    rcvd-vote(x)  \mmember{}  \{b:Id|  (b  \mmember{}  A)\}    \mtimes{}  \mBbbN{}  \mtimes{}  V  supposing  \muparrow{}rcv-vote?(x)
Date html generated:
2015_07_17-AM-11_47_19
Last ObjectModification:
2015_01_28-AM-01_29_17
Home
Index