Step
*
of Lemma
simple-comb-4_wf
∀[Info,A,B,C,D,E:Type].
  ∀F:bag(A) ─→ bag(B) ─→ bag(C) ─→ bag(D) ─→ bag(E)
    ∀[W:EClass(A)]. ∀[X:EClass(B)]. ∀[Y:EClass(C)]. ∀[Z:EClass(D)].  (simple-comb-4(F;W;X;Y;Z) ∈ EClass(E))
BY
{ (ProveWfLemma
   THEN InstLemma `simple-comb_wf` [⌈Info⌉; ⌈E⌉; ⌈4⌉; ⌈λn.[A; B; C; D][n]⌉; ⌈λn.[W; X; Y; Z][n]⌉; ⌈λw.(F (w 0) (w 1) 
                                                                                                       (w 2) 
                                                                                                       (w 3))⌉]⋅
   THEN Try (Complete ((Auto THEN Auto'))))⋅ }
Latex:
Latex:
\mforall{}[Info,A,B,C,D,E:Type].
    \mforall{}F:bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)  {}\mrightarrow{}  bag(D)  {}\mrightarrow{}  bag(E)
        \mforall{}[W:EClass(A)].  \mforall{}[X:EClass(B)].  \mforall{}[Y:EClass(C)].  \mforall{}[Z:EClass(D)].
            (simple-comb-4(F;W;X;Y;Z)  \mmember{}  EClass(E))
By
Latex:
(ProveWfLemma
  THEN  InstLemma  `simple-comb\_wf`  [\mkleeneopen{}Info\mkleeneclose{};  \mkleeneopen{}E\mkleeneclose{};  \mkleeneopen{}4\mkleeneclose{};  \mkleeneopen{}\mlambda{}n.[A;  B;  C;  D][n]\mkleeneclose{};  \mkleeneopen{}\mlambda{}n.[W;  X;  Y;  Z][n]\mkleeneclose{}; 
  \mkleeneopen{}\mlambda{}w.(F  (w  0)  (w  1)  (w  2)  (w  3))\mkleeneclose{}]\mcdot{}
  THEN  Try  (Complete  ((Auto  THEN  Auto'))))\mcdot{}
Home
Index