Step
*
of Lemma
three-intersecting-wait-set-exists
∀t:ℕ. ∀A:Id List.
(∃W:{a:Id| (a ∈ A)} List List
((∀ws:{a:Id| (a ∈ A)} List. ((ws ∈ W)
⇐⇒ (||ws|| = ((2 * t) + 1) ∈ ℤ) ∧ no_repeats({a:Id| (a ∈ A)} ;ws)))
∧ three-intersection(A;W))) supposing
(no_repeats(Id;A) and
(||A|| = ((3 * t) + 1) ∈ ℤ))
BY
{ (Auto
THEN (Assert {a:Id| (a ∈ A)} ~ ℕ(3 * t) + 1 BY
((RWO "equipollent-length" 0 THENM RWO "equipollent-nsub<" 0) THEN Auto'))
THEN (InstLemma `combinations-list` [⌈{a:Id| (a ∈ A)} ⌉;⌈(3 * t) + 1⌉;⌈(2 * t) + 1⌉]⋅ THENA Auto')
THEN ParallelLast
THEN D 0
THEN Try (Trivial)) }
1
1. t : ℕ@i
2. A : Id List@i
3. ||A|| = ((3 * t) + 1) ∈ ℤ
4. no_repeats(Id;A)
5. {a:Id| (a ∈ A)} ~ ℕ(3 * t) + 1
6. C : {a:Id| (a ∈ A)} List List
7. ∀L:{a:Id| (a ∈ A)} List. ((L ∈ C)
⇐⇒ (||L|| = ((2 * t) + 1) ∈ ℤ) ∧ no_repeats({a:Id| (a ∈ A)} ;L))
⊢ three-intersection(A;C)
Latex:
\mforall{}t:\mBbbN{}. \mforall{}A:Id List.
(\mexists{}W:\{a:Id| (a \mmember{} A)\} List List
((\mforall{}ws:\{a:Id| (a \mmember{} A)\} List. ((ws \mmember{} W) \mLeftarrow{}{}\mRightarrow{} (||ws|| = ((2 * t) + 1)) \mwedge{} no\_repeats(\{a:Id| (a \mmember{} A)\}\000C ;ws)))
\mwedge{} three-intersection(A;W))) supposing
(no\_repeats(Id;A) and
(||A|| = ((3 * t) + 1)))
By
(Auto
THEN (Assert \{a:Id| (a \mmember{} A)\} \msim{} \mBbbN{}(3 * t) + 1 BY
((RWO "equipollent-length" 0 THENM RWO "equipollent-nsub<" 0) THEN Auto'))
THEN (InstLemma `combinations-list` [\mkleeneopen{}\{a:Id| (a \mmember{} A)\} \mkleeneclose{};\mkleeneopen{}(3 * t) + 1\mkleeneclose{};\mkleeneopen{}(2 * t) + 1\mkleeneclose{}]\mcdot{} THENA Auto')
THEN ParallelLast
THEN D 0
THEN Try (Trivial))
Home
Index