Step
*
1
6
of Lemma
until-classrel
1. Info : Type
2. A : Type
3. B : Type
4. X : EClass(A)
5. Y : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : A
9. v ↓∈ X es e@i
10. ∀e'<e.∀w:B. (¬w ↓∈ Y es e')@i
11. ∀e'<e.∀v:B. (¬v ∈ Y(e'))
12. class-pred(Y;es;e) = (inr ⋅ ) ∈ (E + Top)
⊢ v ↓∈ case class-pred(Y;es;e) of inl(e') => {} | inr(z) => X es e
BY
{ (HypSubst (-1) 0 THEN Reduce 0 THEN Auto)⋅ }
Latex:
Latex:
1. Info : Type
2. A : Type
3. B : Type
4. X : EClass(A)
5. Y : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : A
9. v \mdownarrow{}\mmember{} X es e@i
10. \mforall{}e'<e.\mforall{}w:B. (\mneg{}w \mdownarrow{}\mmember{} Y es e')@i
11. \mforall{}e'<e.\mforall{}v:B. (\mneg{}v \mmember{} Y(e'))
12. class-pred(Y;es;e) = (inr \mcdot{} )
\mvdash{} v \mdownarrow{}\mmember{} case class-pred(Y;es;e) of inl(e') => \{\} | inr(z) => X es e
By
Latex:
(HypSubst (-1) 0 THEN Reduce 0 THEN Auto)\mcdot{}
Home
Index