Step * of Lemma hdf-parallel-compose-eq

[A,B,C:Type]. ∀[X1,X2:hdataflow(A;B ─→ bag(C))]. ∀[X:hdataflow(A;B)].
  (X1 || X2 (X1 || X2 X) ∈ hdataflow(A;C)) supposing (valueall-type(C) and valueall-type(B) and (↓B))
BY
(InstLemma `parallel-compose2-program-eq` []
   THEN RepeatFor (ParallelLast')
   THEN Auto
   THEN (InstHyp [⌈λi.X1⌉;⌈λi.X2⌉;⌈λi.X⌉4⋅ THENA Auto)
   THEN RepUR ``eclass2-program parallel-class-program`` (-1)
   THEN (ApFunToHypEquands `F' ⌈"any"⌉ ⌈hdataflow(A;C)⌉ (-1)⋅ THENA Auto)
   THEN Reduce (-1)
   THEN Auto) }


Latex:



Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X1,X2:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[X:hdataflow(A;B)].
    (X1  o  X  ||  X2  o  X  =  (X1  ||  X2  o  X))  supposing  (valueall-type(C)  and  valueall-type(B)  and  (\mdownarrow{}B))


By


Latex:
(InstLemma  `parallel-compose2-program-eq`  []
  THEN  RepeatFor  3  (ParallelLast')
  THEN  Auto
  THEN  (InstHyp  [\mkleeneopen{}\mlambda{}i.X1\mkleeneclose{};\mkleeneopen{}\mlambda{}i.X2\mkleeneclose{};\mkleeneopen{}\mlambda{}i.X\mkleeneclose{}]  4\mcdot{}  THENA  Auto)
  THEN  RepUR  ``eclass2-program  parallel-class-program``  (-1)
  THEN  (ApFunToHypEquands  `F'  \mkleeneopen{}F  "any"\mkleeneclose{}  \mkleeneopen{}hdataflow(A;C)\mkleeneclose{}  (-1)\mcdot{}  THENA  Auto)
  THEN  Reduce  (-1)
  THEN  Auto)




Home Index