Step
*
1
1
1
of Lemma
loop-class-state-program_wf
1. Info : Type
2. B : Type
3. valueall-type(B)
4. X : EClass(B ─→ B)
5. init : Id ─→ bag(B)
6. pr : Id ─→ hdataflow(Info;B ─→ B)
7. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(pr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B ─→ B))
8. es : EO+(Info)@i'
9. e : E@i
10. ∀e1:E
((e1 < e)
⇒ (hdf-state(pr loc(e1);init loc(e1))*(map(λx.info(x);before(e1)))
= hdf-state(pr loc(e1)*(map(λx.info(x);before(e1)));Prior(loop-class-state(X;init))?init(e1))
∈ hdataflow(Info;B)))
11. ¬↑first(e)
12. hdf-state(pr loc(e);init loc(e))*(map(λx.info(x);before(pred(e))))
= hdf-state(pr loc(e)*(map(λx.info(x);before(pred(e))));Prior(loop-class-state(X;init))?init(pred(e)))
∈ hdataflow(Info;B)
13. v : bag(B)@i
14. Prior(loop-class-state(X;init))?init(pred(e)) = v ∈ bag(B)@i
15. x : Info ─→ (hdataflow(Info;B ─→ B) × bag(B ─→ B))@i
⊢ (pr loc(pred(e))*(map(λx.info(x);before(pred(e)))) = (inl x) ∈ hdataflow(Info;B ─→ B))
⇒ ((fst(let s1,b = let X',fs = x info(pred(e))
in let b ←─ ∪f∈fs.bag-map(f;v)
in let s' ←─ if bag-null(b) then v else b fi
in <<X', s'>, s'>
in <mk-hdf(Xbs,a.let X,s = Xbs
in let X',fs = case X of inl(P) => P a | inr(z) => <inr ⋅ , {}>
in let b ←─ ∪f∈fs.bag-map(f;s)
in let s' ←─ if bag-null(b) then s else b fi
in <<X', s'>, s'>;s.ff;s1)
, b
>))
= hdf-state(fst((x info(pred(e))));if 0 <z #(loop-class-state(X;init)(pred(e)))
then loop-class-state(X;init)(pred(e))
else v
fi )
∈ hdataflow(Info;B))
BY
{ ((GenApply (-1) THENA Auto)
THEN D (-2)
THEN Reduce 0
THEN Fold `hdf-ap` 0
THEN (CallByValueReduceOn ⌈∪f∈z2.bag-map(f;v)⌉ 0⋅ THENA Auto)
THEN (CallByValueReduceOn ⌈if bag-null(∪f∈z2.bag-map(f;v)) then v else ∪f∈z2.bag-map(f;v) fi ⌉ 0⋅ THENA Auto)
THEN Reduce 0
THEN Fold `hdf-state` 0
THEN Auto
THEN Try ((Fold `hdf-run` 0 THEN Auto))
THEN EqCD
THEN Auto) }
1
.....subterm..... T:t
2:n
1. Info : Type
2. B : Type
3. valueall-type(B)
4. X : EClass(B ─→ B)
5. init : Id ─→ bag(B)
6. pr : Id ─→ hdataflow(Info;B ─→ B)
7. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(pr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B ─→ B))
8. es : EO+(Info)@i'
9. e : E@i
10. ∀e1:E
((e1 < e)
⇒ (hdf-state(pr loc(e1);init loc(e1))*(map(λx.info(x);before(e1)))
= hdf-state(pr loc(e1)*(map(λx.info(x);before(e1)));Prior(loop-class-state(X;init))?init(e1))
∈ hdataflow(Info;B)))
11. ¬↑first(e)
12. hdf-state(pr loc(e);init loc(e))*(map(λx.info(x);before(pred(e))))
= hdf-state(pr loc(e)*(map(λx.info(x);before(pred(e))));Prior(loop-class-state(X;init))?init(pred(e)))
∈ hdataflow(Info;B)
13. v : bag(B)@i
14. Prior(loop-class-state(X;init))?init(pred(e)) = v ∈ bag(B)@i
15. x : Info ─→ (hdataflow(Info;B ─→ B) × bag(B ─→ B))@i
16. z1 : hdataflow(Info;B ─→ B)@i
17. z2 : bag(B ─→ B)@i
18. (x info(pred(e))) = <z1, z2> ∈ (hdataflow(Info;B ─→ B) × bag(B ─→ B))@i
19. pr loc(pred(e))*(map(λx.info(x);before(pred(e)))) = (inl x) ∈ hdataflow(Info;B ─→ B)@i
⊢ if bag-null(∪f∈z2.bag-map(f;v)) then v else ∪f∈z2.bag-map(f;v) fi
= if 0 <z #(loop-class-state(X;init)(pred(e))) then loop-class-state(X;init)(pred(e)) else v fi
∈ bag(B)
Latex:
Latex:
1. Info : Type
2. B : Type
3. valueall-type(B)
4. X : EClass(B {}\mrightarrow{} B)
5. init : Id {}\mrightarrow{} bag(B)
6. pr : Id {}\mrightarrow{} hdataflow(Info;B {}\mrightarrow{} B)
7. \mforall{}es:EO+(Info). \mforall{}e:E. (X(e) = (snd(pr loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e)))))
8. es : EO+(Info)@i'
9. e : E@i
10. \mforall{}e1:E
((e1 < e)
{}\mRightarrow{} (hdf-state(pr loc(e1);init loc(e1))*(map(\mlambda{}x.info(x);before(e1)))
= hdf-state(pr loc(e1)*(map(\mlambda{}x.info(x);
before(e1)));Prior(loop-class-state(X;init))?init(e1))))
11. \mneg{}\muparrow{}first(e)
12. hdf-state(pr loc(e);init loc(e))*(map(\mlambda{}x.info(x);before(pred(e))))
= hdf-state(pr loc(e)*(map(\mlambda{}x.info(x);
before(pred(e))));Prior(loop-class-state(X;init))?init(pred(e)))
13. v : bag(B)@i
14. Prior(loop-class-state(X;init))?init(pred(e)) = v@i
15. x : Info {}\mrightarrow{} (hdataflow(Info;B {}\mrightarrow{} B) \mtimes{} bag(B {}\mrightarrow{} B))@i
\mvdash{} (pr loc(pred(e))*(map(\mlambda{}x.info(x);before(pred(e)))) = (inl x))
{}\mRightarrow{} ((fst(let s1,b = let X',fs = x info(pred(e))
in let b \mleftarrow{}{} \mcup{}f\mmember{}fs.bag-map(f;v)
in let s' \mleftarrow{}{} if bag-null(b) then v else b fi
in <<X', s'>, s'>
in <mk-hdf(Xbs,a.let X,s = Xbs
in let X',fs = case X of inl(P) => P a | inr(z) => <inr \mcdot{} , \{\}>
in let b \mleftarrow{}{} \mcup{}f\mmember{}fs.bag-map(f;s)
in let s' \mleftarrow{}{} if bag-null(b) then s else b fi
in <<X', s'>, s'>s.ff;s1)
, b
>))
= hdf-state(fst((x info(pred(e))));if 0 <z \#(loop-class-state(X;init)(pred(e)))
then loop-class-state(X;init)(pred(e))
else v
fi ))
By
Latex:
((GenApply (-1) THENA Auto)
THEN D (-2)
THEN Reduce 0
THEN Fold `hdf-ap` 0
THEN (CallByValueReduceOn \mkleeneopen{}\mcup{}f\mmember{}z2.bag-map(f;v)\mkleeneclose{} 0\mcdot{} THENA Auto)
THEN (CallByValueReduceOn \mkleeneopen{}if bag-null(\mcup{}f\mmember{}z2.bag-map(f;v)) then v else \mcup{}f\mmember{}z2.bag-map(f;v) fi \mkleeneclose{} 0\mcdot{}
THENA Auto
)
THEN Reduce 0
THEN Fold `hdf-state` 0
THEN Auto
THEN Try ((Fold `hdf-run` 0 THEN Auto))
THEN EqCD
THEN Auto)
Home
Index