Step
*
2
of Lemma
loop-class-state-program_wf
1. Info : Type
2. B : Type
3. valueall-type(B)
4. X : EClass(B ─→ B)
5. init : Id ─→ bag(B)
6. pr : Id ─→ hdataflow(Info;B ─→ B)
7. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(pr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B ─→ B))
8. es : EO+(Info)@i'
9. e : E@i
10. hdf-state(pr loc(e);init loc(e))*(map(λx.info(x);before(e)))
= hdf-state(pr loc(e)*(map(λx.info(x);before(e)));Prior(loop-class-state(X;init))?init(e))
∈ hdataflow(Info;B)
⊢ loop-class-state(X;init)(e) = (snd((λi.hdf-state(pr i;init i)) loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B)
BY
{ (Reduce 0
THEN (HypSubst' (-1) 0 THENA Auto)
THEN RW (AddrC [2;1] RecUnfoldTopAbC) 0
THEN RepUR ``eclass-cond class-ap eclass3 member-eclass`` 0
THEN Fold `class-ap` 0
THEN GenConclAtAddr [2;3]
THEN (RWO "7" 0 THENA Auto)
THEN GenConclAtAddr [2;2;1;1;1]) }
1
1. Info : Type
2. B : Type
3. valueall-type(B)
4. X : EClass(B ─→ B)
5. init : Id ─→ bag(B)
6. pr : Id ─→ hdataflow(Info;B ─→ B)
7. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(pr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B ─→ B))
8. es : EO+(Info)@i'
9. e : E@i
10. hdf-state(pr loc(e);init loc(e))*(map(λx.info(x);before(e)))
= hdf-state(pr loc(e)*(map(λx.info(x);before(e)));Prior(loop-class-state(X;init))?init(e))
∈ hdataflow(Info;B)
11. v : bag(B)@i
12. Prior(loop-class-state(X;init))?init(e) = v ∈ bag(B)@i
13. v1 : hdataflow(Info;B ─→ B)@i
14. pr loc(e)*(map(λx.info(x);before(e))) = v1 ∈ hdataflow(Info;B ─→ B)@i
⊢ if ¬b(#(snd(v1(info(e)))) =z 0) then ∪f∈snd(v1(info(e))).bag-map(f;v) else v fi
= (snd(hdf-state(v1;v)(info(e))))
∈ bag(B)
Latex:
Latex:
1. Info : Type
2. B : Type
3. valueall-type(B)
4. X : EClass(B {}\mrightarrow{} B)
5. init : Id {}\mrightarrow{} bag(B)
6. pr : Id {}\mrightarrow{} hdataflow(Info;B {}\mrightarrow{} B)
7. \mforall{}es:EO+(Info). \mforall{}e:E. (X(e) = (snd(pr loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e)))))
8. es : EO+(Info)@i'
9. e : E@i
10. hdf-state(pr loc(e);init loc(e))*(map(\mlambda{}x.info(x);before(e)))
= hdf-state(pr loc(e)*(map(\mlambda{}x.info(x);before(e)));Prior(loop-class-state(X;init))?init(e))
\mvdash{} loop-class-state(X;init)(e)
= (snd((\mlambda{}i.hdf-state(pr i;init i)) loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e))))
By
Latex:
(Reduce 0
THEN (HypSubst' (-1) 0 THENA Auto)
THEN RW (AddrC [2;1] RecUnfoldTopAbC) 0
THEN RepUR ``eclass-cond class-ap eclass3 member-eclass`` 0
THEN Fold `class-ap` 0
THEN GenConclAtAddr [2;3]
THEN (RWO "7" 0 THENA Auto)
THEN GenConclAtAddr [2;2;1;1;1])
Home
Index