Nuprl Lemma : msg-interface-extensionality
∀[f:Name ─→ Type]. ∀[x,y:Interface].
  uiff(x = y ∈ Interface;(x.delay = y.delay ∈ ℤ) ∧ (x.dst = y.dst ∈ Id) ∧ (x.msg = y.msg ∈ Message(f)))
Proof
Definitions occuring in Statement : 
msg-interface-delay: mi.delay
, 
msg-interface-message: mi.msg
, 
msg-interface-destination: mi.dst
, 
msg-interface: Interface
, 
Message: Message(f)
, 
Id: Id
, 
name: Name
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
function: x:A ─→ B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
and_wf, 
equal_wf, 
msg-interface_wf, 
msg-interface-delay_wf, 
msg-interface-destination_wf, 
msg-interface-message_wf, 
Id_wf, 
Message_wf
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[x,y:Interface].
    uiff(x  =  y;(x.delay  =  y.delay)  \mwedge{}  (x.dst  =  y.dst)  \mwedge{}  (x.msg  =  y.msg))
Date html generated:
2015_07_22-AM-11_58_53
Last ObjectModification:
2015_01_28-AM-08_42_11
Home
Index