Step
*
of Lemma
Q-R-pre-preserving-1-1
∀[es:EO]. ∀[P:E ─→ ℙ]. ∀[Q,R:E ─→ E ─→ ℙ]. ∀[f:{e:E| P e} ─→ E].
(Inj({e:E| P e} ;E;f)) supposing (f is Q-R-pre-preserving on P and AntiSym(E;e,e'.R e e') and Refl(E;e,e'.Q e e'))
BY
{ ⌈(RepUR ``inject anti_sym refl Q-R-pre-preserving`` 0 THEN Auto)⌉⋅ }
1
1. es : EO
2. P : E ─→ ℙ
3. Q : E ─→ E ─→ ℙ
4. R : E ─→ E ─→ ℙ
5. f : {e:E| P e} ─→ E
6. ∀a:E. (Q a a)
7. ∀e,e':E. ((R e e')
⇒ (R e' e)
⇒ (e = e' ∈ E))
8. ∀e,e':{e:E| P e} . ((Q (f e) (f e'))
⇒ (R e e'))
9. a1 : {e:E| P e} @i
10. a2 : {e:E| P e} @i
11. (f a1) = (f a2) ∈ E@i
⊢ a1 = a2 ∈ {e:E| P e}
Latex:
\mforall{}[es:EO]. \mforall{}[P:E {}\mrightarrow{} \mBbbP{}]. \mforall{}[Q,R:E {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}]. \mforall{}[f:\{e:E| P e\} {}\mrightarrow{} E].
(Inj(\{e:E| P e\} ;E;f)) supposing
(f is Q-R-pre-preserving on P and
AntiSym(E;e,e'.R e e') and
Refl(E;e,e'.Q e e'))
By
\mkleeneopen{}(RepUR ``inject anti\_sym refl Q-R-pre-preserving`` 0 THEN Auto)\mkleeneclose{}\mcdot{}
Home
Index