Step
*
1
of Lemma
cond_equiv_to_causl
1. es : EO@i'
2. [R] : E ─→ E ─→ ℙ
3. [P] : E ─→ ℙ
4. R => λe,e'. (e < e')@i
5. ∀x,y:E. (((P x) ∧ (P y))
⇒ (((R x y) ∨ (x = y ∈ E)) ∨ (R y x)))@i
6. x : E@i
⊢ ∀y:E. (((P x) ∧ (P y))
⇒ (R x y
⇐⇒ (x < y)))
BY
{ ((InstLemma `cond_rel_equivalent` [⌈E⌉; ⌈R⌉; ⌈λe,e'. (e < e')⌉; ⌈P⌉])⋅ THEN Try (Complete (Auto))) }
1
.....antecedent.....
1. es : EO@i'
2. [R] : E ─→ E ─→ ℙ
3. [P] : E ─→ ℙ
4. R => λe,e'. (e < e')@i
5. ∀x,y:E. (((P x) ∧ (P y))
⇒ (((R x y) ∨ (x = y ∈ E)) ∨ (R y x)))@i
6. x : E@i
⊢ Trans(E;x,y.(λe,e'. (e < e')) x y)
2
.....antecedent.....
1. es : EO@i'
2. R : E ─→ E ─→ ℙ
3. P : E ─→ ℙ
4. R => λe,e'. (e < e')@i
5. ∀x,y:E. (((P x) ∧ (P y))
⇒ (((R x y) ∨ (x = y ∈ E)) ∨ (R y x)))@i
6. x : E@i
⊢ ∀x,y:E. (((λe,e'. (e < e')) x y)
⇒ (¬((λe,e'. (e < e')) y x)))
Latex:
1. es : EO@i'
2. [R] : E {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}
3. [P] : E {}\mrightarrow{} \mBbbP{}
4. R => \mlambda{}e,e'. (e < e')@i
5. \mforall{}x,y:E. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (((R x y) \mvee{} (x = y)) \mvee{} (R y x)))@i
6. x : E@i
\mvdash{} \mforall{}y:E. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (R x y \mLeftarrow{}{}\mRightarrow{} (x < y)))
By
((InstLemma `cond\_rel\_equivalent` [\mkleeneopen{}E\mkleeneclose{}; \mkleeneopen{}R\mkleeneclose{}; \mkleeneopen{}\mlambda{}e,e'. (e < e')\mkleeneclose{}; \mkleeneopen{}P\mkleeneclose{}])\mcdot{} THEN Try (Complete (Auto)))
Home
Index