Step
*
of Lemma
cond_rel_equivalent
∀[T:Type]. ∀[R,Q:T ─→ T ─→ ℙ]. ∀[P:T ─→ ℙ].
(Trans(T;x,y.Q x y)
⇒ R => Q
⇒ (∀x,y:T. (((P x) ∧ (P y))
⇒ (((R x y) ∨ (x = y ∈ T)) ∨ (R y x))))
⇒ (∀x,y:T. (((P x) ∧ (P y))
⇒ (R x y
⇐⇒ Q x y)))
supposing ∀x,y:T. ((Q x y)
⇒ (¬(Q y x))))
BY
{ Auto }
1
1. [T] : Type
2. [R] : T ─→ T ─→ ℙ
3. [Q] : T ─→ T ─→ ℙ
4. [P] : T ─→ ℙ
5. Trans(T;x,y.Q x y)@i
6. ∀x,y:T. ((Q x y)
⇒ (¬(Q y x)))
7. R => Q@i
8. ∀x,y:T. (((P x) ∧ (P y))
⇒ (((R x y) ∨ (x = y ∈ T)) ∨ (R y x)))@i
9. x : T@i
10. y : T@i
11. P x@i
12. P y@i
13. Q x y@i
⊢ R x y
Latex:
\mforall{}[T:Type]. \mforall{}[R,Q:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}].
(Trans(T;x,y.Q x y)
{}\mRightarrow{} R => Q
{}\mRightarrow{} (\mforall{}x,y:T. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (((R x y) \mvee{} (x = y)) \mvee{} (R y x))))
{}\mRightarrow{} (\mforall{}x,y:T. (((P x) \mwedge{} (P y)) {}\mRightarrow{} (R x y \mLeftarrow{}{}\mRightarrow{} Q x y)))
supposing \mforall{}x,y:T. ((Q x y) {}\mRightarrow{} (\mneg{}(Q y x))))
By
Auto
Home
Index