Step
*
of Lemma
es-first-at-exists2
∀es:EO. ∀i:Id.
∀[P:{e:E| loc(e) = i ∈ Id} ─→ ℙ]
((∀e:{e:E| loc(e) = i ∈ Id} . Dec(P[e]))
⇒ (∀e:E. (∃e'≤e.e' is first@ i s.t. e'.P[e']) supposing ((¬∀e'≤e.¬P[e']) and (loc(e) = i ∈ Id))))
BY
{ (Auto THEN (Assert Dec(∃e'≤e.P[e']) BY (ProveDecidable1 THEN Auto THEN D 0 THEN Auto)) THEN D -1) }
1
1. es : EO@i'
2. i : Id@i
3. [P] : {e:E| loc(e) = i ∈ Id} ─→ ℙ
4. ∀e:{e:E| loc(e) = i ∈ Id} . Dec(P[e])@i
5. e : E@i
6. loc(e) = i ∈ Id
7. ¬∀e'≤e.¬P[e']
8. ∃e'≤e.P[e']
⊢ ∃e'≤e.e' is first@ i s.t. e'.P[e']
2
1. es : EO@i'
2. i : Id@i
3. [P] : {e:E| loc(e) = i ∈ Id} ─→ ℙ
4. ∀e:{e:E| loc(e) = i ∈ Id} . Dec(P[e])@i
5. e : E@i
6. loc(e) = i ∈ Id
7. ¬∀e'≤e.¬P[e']
8. ¬∃e'≤e.P[e']
⊢ ∃e'≤e.e' is first@ i s.t. e'.P[e']
Latex:
\mforall{}es:EO. \mforall{}i:Id.
\mforall{}[P:\{e:E| loc(e) = i\} {}\mrightarrow{} \mBbbP{}]
((\mforall{}e:\{e:E| loc(e) = i\} . Dec(P[e]))
{}\mRightarrow{} (\mforall{}e:E. (\mexists{}e'\mleq{}e.e' is first@ i s.t. e'.P[e']) supposing ((\mneg{}\mforall{}e'\mleq{}e.\mneg{}P[e']) and (loc(e) = i))))
By
(Auto THEN (Assert Dec(\mexists{}e'\mleq{}e.P[e']) BY (ProveDecidable1 THEN Auto THEN D 0 THEN Auto)) THEN D -1)
Home
Index