Step
*
of Lemma
es-pred-one-one
∀[es:EO]. ∀[a,b:E]. (a = b ∈ E) supposing ((pred(a) = pred(b) ∈ E) and (¬↑first(b)) and (¬↑first(a)))
BY
{ (((((Auto
THEN AssertBY ⌈(a <loc b) ∨ (a = b ∈ E) ∨ (b <loc a)⌉
(((InstESAxiom ⌈es⌉ [⌈a⌉; ⌈b⌉] 3)⋅ THENA Auto)
THEN (BHyp (-1))
THEN Auto
THEN RWO "es-loc-pred<" 0
THEN Auto
THEN EqCD
THEN Auto)⋅
THEN SplitOrHyps
THEN Auto
THEN (RWO "es-le-pred<" (-1)))
THENA Auto
)
THENL [(RevHypSubst (-2) (-1)); (HypSubst (-2) (-1))]
)
THENA Auto
)
THEN (RWO "es-le-pred" (-1))
THEN Auto
THEN (InstLemma `es-locl-antireflexive` [⌈es⌉; ⌈a⌉])⋅
THEN Auto
THEN (InstLemma `es-locl-antireflexive` [⌈es⌉; ⌈b⌉])⋅
THEN Auto) }
Latex:
\mforall{}[es:EO]. \mforall{}[a,b:E]. (a = b) supposing ((pred(a) = pred(b)) and (\mneg{}\muparrow{}first(b)) and (\mneg{}\muparrow{}first(a)))
By
(((((Auto
THEN AssertBY \mkleeneopen{}(a <loc b) \mvee{} (a = b) \mvee{} (b <loc a)\mkleeneclose{}
(((InstESAxiom \mkleeneopen{}es\mkleeneclose{} [\mkleeneopen{}a\mkleeneclose{}; \mkleeneopen{}b\mkleeneclose{}] 3)\mcdot{} THENA Auto)
THEN (BHyp (-1))
THEN Auto
THEN RWO "es-loc-pred<" 0
THEN Auto
THEN EqCD
THEN Auto)\mcdot{}
THEN SplitOrHyps
THEN Auto
THEN (RWO "es-le-pred<" (-1)))
THENA Auto
)
THENL [(RevHypSubst (-2) (-1)); (HypSubst (-2) (-1))]
)
THENA Auto
)
THEN (RWO "es-le-pred" (-1))
THEN Auto
THEN (InstLemma `es-locl-antireflexive` [\mkleeneopen{}es\mkleeneclose{}; \mkleeneopen{}a\mkleeneclose{}])\mcdot{}
THEN Auto
THEN (InstLemma `es-locl-antireflexive` [\mkleeneopen{}es\mkleeneclose{}; \mkleeneopen{}b\mkleeneclose{}])\mcdot{}
THEN Auto)
Home
Index