Step
*
2
of Lemma
es-pstar-q_functionality_wrt_iff
1. es : EO@i'
2. e1 : E@i
3. e2 : {e:E| loc(e) = loc(e1) ∈ Id} @i
4. [p] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
5. [q] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
6. [p'] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
7. [q'] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
8. ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ (p[a;b]
⇐⇒ p'[a;b]))@i
9. ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ (q[a;b]
⇐⇒ q'[a;b]))@i
10. [e1;e2]~([a,b].p[a;b])*[a,b].q[a;b] ∈ ℙ
11. [e1;e2]~([a,b].p'[a;b])*[a,b].q'[a;b] ∈ ℙ
12. [e1;e2]~([a,b].p'[a;b])*[a,b].q'[a;b]@i
⊢ [e1;e2]~([a,b].p[a;b])*[a,b].q[a;b]
BY
{ Assert ⌈∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ {p'[a;b]
⇒ p[a;b]})⌉⋅ }
1
.....assertion.....
1. es : EO@i'
2. e1 : E@i
3. e2 : {e:E| loc(e) = loc(e1) ∈ Id} @i
4. [p] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
5. [q] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
6. [p'] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
7. [q'] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
8. ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ (p[a;b]
⇐⇒ p'[a;b]))@i
9. ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ (q[a;b]
⇐⇒ q'[a;b]))@i
10. [e1;e2]~([a,b].p[a;b])*[a,b].q[a;b] ∈ ℙ
11. [e1;e2]~([a,b].p'[a;b])*[a,b].q'[a;b] ∈ ℙ
12. [e1;e2]~([a,b].p'[a;b])*[a,b].q'[a;b]@i
⊢ ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ {p'[a;b]
⇒ p[a;b]})
2
1. es : EO@i'
2. e1 : E@i
3. e2 : {e:E| loc(e) = loc(e1) ∈ Id} @i
4. [p] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
5. [q] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
6. [p'] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
7. [q'] : {e:E| loc(e) = loc(e1) ∈ Id} ─→ {e:E| loc(e) = loc(e1) ∈ Id} ─→ ℙ
8. ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ (p[a;b]
⇐⇒ p'[a;b]))@i
9. ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ (q[a;b]
⇐⇒ q'[a;b]))@i
10. [e1;e2]~([a,b].p[a;b])*[a,b].q[a;b] ∈ ℙ
11. [e1;e2]~([a,b].p'[a;b])*[a,b].q'[a;b] ∈ ℙ
12. [e1;e2]~([a,b].p'[a;b])*[a,b].q'[a;b]@i
13. ∀a,b:{e:E| loc(e) = loc(e1) ∈ Id} . ((a ∈ [e1, e2])
⇒ (b ∈ [e1, e2])
⇒ {p'[a;b]
⇒ p[a;b]})
⊢ [e1;e2]~([a,b].p[a;b])*[a,b].q[a;b]
Latex:
1. es : EO@i'
2. e1 : E@i
3. e2 : \{e:E| loc(e) = loc(e1)\} @i
4. [p] : \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \mBbbP{}
5. [q] : \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \mBbbP{}
6. [p'] : \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \mBbbP{}
7. [q'] : \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \{e:E| loc(e) = loc(e1)\} {}\mrightarrow{} \mBbbP{}
8. \mforall{}a,b:\{e:E| loc(e) = loc(e1)\} . ((a \mmember{} [e1, e2]) {}\mRightarrow{} (b \mmember{} [e1, e2]) {}\mRightarrow{} (p[a;b] \mLeftarrow{}{}\mRightarrow{} p'[a;b]))@i
9. \mforall{}a,b:\{e:E| loc(e) = loc(e1)\} . ((a \mmember{} [e1, e2]) {}\mRightarrow{} (b \mmember{} [e1, e2]) {}\mRightarrow{} (q[a;b] \mLeftarrow{}{}\mRightarrow{} q'[a;b]))@i
10. [e1;e2]\msim{}([a,b].p[a;b])*[a,b].q[a;b] \mmember{} \mBbbP{}
11. [e1;e2]\msim{}([a,b].p'[a;b])*[a,b].q'[a;b] \mmember{} \mBbbP{}
12. [e1;e2]\msim{}([a,b].p'[a;b])*[a,b].q'[a;b]@i
\mvdash{} [e1;e2]\msim{}([a,b].p[a;b])*[a,b].q[a;b]
By
Assert \mkleeneopen{}\mforall{}a,b:\{e:E| loc(e) = loc(e1)\} . ((a \mmember{} [e1, e2]) {}\mRightarrow{} (b \mmember{} [e1, e2]) {}\mRightarrow{} \{p'[a;b] {}\mRightarrow{} p[a;b]\})\mkleeneclose{}\mcdot{}
Home
Index