Step
*
of Lemma
mk-eo_wf
β[E:Type]. β[dom:E ββ πΉ]. β[l:E ββ Id]. β[R:E ββ E ββ β]. β[locless:E ββ E ββ πΉ]. β[pred:E ββ E]. β[rank:E ββ β].
mk-eo(E;dom;l;R;locless;pred;rank) β EO
supposing (βx,y:E. ((βx R y)
β rank x < rank y))
β§ (βe:E. ((l (pred e)) = (l e) β Id))
β§ (βe:E. (Β¬βe R (pred e)))
β§ (βe,x:E. ((βx R e)
β ((l x) = (l e) β Id)
β ((β(pred e) R e) β§ (Β¬β(pred e) R x))))
β§ (βx,y,z:E. ((βx R y)
β (βy R z)
β (βx R z)))
β§ (βe1,e2:E.
(βe1 R e2
ββ β(e1 locless e2)) β§ ((Β¬βe1 R e2)
β (Β¬βe2 R e1)
β (e1 = e2 β E)) supposing (l e1) = (l e2) β Id)
BY
{ (Autoβ
THEN MemTypeCD
THEN Auto
THEN Try (ProveWfLemma)
THEN D 0
THEN RepUR ``mk-eo mk-eo-record`` 0
THEN SplitAndConcl
THEN Try (Trivial)) }
Latex:
\mforall{}[E:Type]. \mforall{}[dom:E {}\mrightarrow{} \mBbbB{}]. \mforall{}[l:E {}\mrightarrow{} Id]. \mforall{}[R:E {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}]. \mforall{}[locless:E {}\mrightarrow{} E {}\mrightarrow{} \mBbbB{}]. \mforall{}[pred:E {}\mrightarrow{} E].
\mforall{}[rank:E {}\mrightarrow{} \mBbbN{}].
mk-eo(E;dom;l;R;locless;pred;rank) \mmember{} EO
supposing (\mforall{}x,y:E. ((\mdownarrow{}x R y) {}\mRightarrow{} rank x < rank y))
\mwedge{} (\mforall{}e:E. ((l (pred e)) = (l e)))
\mwedge{} (\mforall{}e:E. (\mneg{}\mdownarrow{}e R (pred e)))
\mwedge{} (\mforall{}e,x:E. ((\mdownarrow{}x R e) {}\mRightarrow{} ((l x) = (l e)) {}\mRightarrow{} ((\mdownarrow{}(pred e) R e) \mwedge{} (\mneg{}\mdownarrow{}(pred e) R x))))
\mwedge{} (\mforall{}x,y,z:E. ((\mdownarrow{}x R y) {}\mRightarrow{} (\mdownarrow{}y R z) {}\mRightarrow{} (\mdownarrow{}x R z)))
\mwedge{} (\mforall{}e1,e2:E.
(\mdownarrow{}e1 R e2 \mLeftarrow{}{}\mRightarrow{} \muparrow{}(e1 locless e2)) \mwedge{} ((\mneg{}\mdownarrow{}e1 R e2) {}\mRightarrow{} (\mneg{}\mdownarrow{}e2 R e1) {}\mRightarrow{} (e1 = e2))
supposing (l e1) = (l e2))
By
(Auto\mcdot{}
THEN MemTypeCD
THEN Auto
THEN Try (ProveWfLemma)
THEN D 0
THEN RepUR ``mk-eo mk-eo-record`` 0
THEN SplitAndConcl
THEN Try (Trivial))
Home
Index