Step
*
of Lemma
mk-eo_wf
∀[E:Type]. ∀[dom:E ─→ 𝔹]. ∀[l:E ─→ Id]. ∀[R:E ─→ E ─→ ℙ]. ∀[locless:E ─→ E ─→ 𝔹]. ∀[pred:E ─→ E]. ∀[rank:E ─→ ℕ].
  mk-eo(E;dom;l;R;locless;pred;rank) ∈ EO 
  supposing (∀x,y:E.  ((↓x R y) 
⇒ rank x < rank y))
  ∧ (∀e:E. ((l (pred e)) = (l e) ∈ Id))
  ∧ (∀e:E. (¬↓e R (pred e)))
  ∧ (∀e,x:E.  ((↓x R e) 
⇒ ((l x) = (l e) ∈ Id) 
⇒ ((↓(pred e) R e) ∧ (¬↓(pred e) R x))))
  ∧ (∀x,y,z:E.  ((↓x R y) 
⇒ (↓y R z) 
⇒ (↓x R z)))
  ∧ (∀e1,e2:E.
       (↓e1 R e2 
⇐⇒ ↑(e1 locless e2)) ∧ ((¬↓e1 R e2) 
⇒ (¬↓e2 R e1) 
⇒ (e1 = e2 ∈ E)) supposing (l e1) = (l e2) ∈ Id)
BY
{ (Auto⋅
   THEN MemTypeCD
   THEN Auto
   THEN Try (ProveWfLemma)
   THEN D 0
   THEN RepUR ``mk-eo mk-eo-record`` 0
   THEN SplitAndConcl
   THEN Try (Trivial)) }
Latex:
\mforall{}[E:Type].  \mforall{}[dom:E  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[l:E  {}\mrightarrow{}  Id].  \mforall{}[R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[locless:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[pred:E  {}\mrightarrow{}  E].
\mforall{}[rank:E  {}\mrightarrow{}  \mBbbN{}].
    mk-eo(E;dom;l;R;locless;pred;rank)  \mmember{}  EO 
    supposing  (\mforall{}x,y:E.    ((\mdownarrow{}x  R  y)  {}\mRightarrow{}  rank  x  <  rank  y))
    \mwedge{}  (\mforall{}e:E.  ((l  (pred  e))  =  (l  e)))
    \mwedge{}  (\mforall{}e:E.  (\mneg{}\mdownarrow{}e  R  (pred  e)))
    \mwedge{}  (\mforall{}e,x:E.    ((\mdownarrow{}x  R  e)  {}\mRightarrow{}  ((l  x)  =  (l  e))  {}\mRightarrow{}  ((\mdownarrow{}(pred  e)  R  e)  \mwedge{}  (\mneg{}\mdownarrow{}(pred  e)  R  x))))
    \mwedge{}  (\mforall{}x,y,z:E.    ((\mdownarrow{}x  R  y)  {}\mRightarrow{}  (\mdownarrow{}y  R  z)  {}\mRightarrow{}  (\mdownarrow{}x  R  z)))
    \mwedge{}  (\mforall{}e1,e2:E.
              (\mdownarrow{}e1  R  e2  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}(e1  locless  e2))  \mwedge{}  ((\mneg{}\mdownarrow{}e1  R  e2)  {}\mRightarrow{}  (\mneg{}\mdownarrow{}e2  R  e1)  {}\mRightarrow{}  (e1  =  e2)) 
              supposing  (l  e1)  =  (l  e2))
By
(Auto\mcdot{}
  THEN  MemTypeCD
  THEN  Auto
  THEN  Try  (ProveWfLemma)
  THEN  D  0
  THEN  RepUR  ``mk-eo  mk-eo-record``  0
  THEN  SplitAndConcl
  THEN  Try  (Trivial))
Home
Index