Step
*
1
of Lemma
pv11_p1_A4_C1_funC
1. Cmd : {T:Type| valueall-type(T)} @i'
2. f : pv11_p1_headers_type{i:l}(Cmd)@i'
3. (f [decision]) = (ℤ × Cmd) ∈ Type
4. (f [propose]) = (ℤ × Cmd) ∈ Type
5. (f ``pv11_p1 adopted``) = (pv11_p1_Ballot_Num() × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List)) ∈ Type
6. (f ``pv11_p1 preempted``) = pv11_p1_Ballot_Num() ∈ Type
7. (f ``pv11_p1 p2b``) = (Id × pv11_p1_Ballot_Num() × ℤ × pv11_p1_Ballot_Num()) ∈ Type
8. (f ``pv11_p1 p2a``) = (Id × pv11_p1_Ballot_Num() × ℤ × Cmd) ∈ Type
9. (f ``pv11_p1 p1b``)
= (Id × pv11_p1_Ballot_Num() × pv11_p1_Ballot_Num() × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List))
∈ Type
10. (f ``pv11_p1 p1a``) = (Id × pv11_p1_Ballot_Num()) ∈ Type
11. f ∈ Name ─→ Type
12. es : EO+(Message(f))@i'
13. e1 : E@i
14. e2 : E@i
15. accpts : bag(Id)@i
16. ldrs : bag(Id)@i
17. ldrs_uid : Id ─→ ℤ@i
18. reps : bag(Id)@i
19. i1 : Id@i
20. i2 : Id@i
21. l1 : Id@i
22. l2 : Id@i
23. b : pv11_p1_Ballot_Num()@i
24. s : ℤ@i
25. p1 : Cmd@i
26. p2 : Cmd@i
27. Inj(Id;ℤ;ldrs_uid)@i
28. pv11_p1_message-constraint{paxos-v11-part1.esh:o}(Cmd; accpts; ldrs; ldrs_uid; reps; f; es)@i
29. pv11_p1_p2a'send(Cmd;f) i1 <l1, b, s, p1> ∈ pv11_p1_main(Cmd;accpts;ldrs;ldrs_uid;reps;f)(e1)@i
30. pv11_p1_p2a'send(Cmd;f) i2 <l2, b, s, p2> ∈ pv11_p1_main(Cmd;accpts;ldrs;ldrs_uid;reps;f)(e2)@i
⊢ p1 = p2 ∈ Cmd
BY
{ (InstLemma `pv11_p1_A4_C1` [⌈Cmd⌉;⌈f⌉;⌈es⌉;⌈e1⌉;⌈e2⌉;⌈accpts⌉;⌈ldrs⌉;⌈ldrs_uid⌉;⌈reps⌉;⌈b⌉;⌈b⌉;⌈[]⌉;⌈[]⌉;⌈i1⌉;⌈i2⌉;
⌈l1⌉;⌈b⌉;⌈s⌉;⌈p1⌉;⌈p2⌉]⋅
THEN Auto
THEN OrRight
THEN Auto
THEN Assert ⌈l1 = l2 ∈ Id⌉⋅
THEN Auto
THEN RepeatFor 2 ((FLemma `pv11_p1_bnum_p2a` [-2] THENA Auto))
THEN ExRepD
THEN SimpleAssertReasoning
THEN (HypSubst' (-3) (-1) THENA Auto)
THEN RepUR ``pv11_p1_Ballot_Num pv11_p1_mk_bnum`` (-1)
THEN Auto) }
Latex:
Latex:
1. Cmd : \{T:Type| valueall-type(T)\} @i'
2. f : pv11\_p1\_headers\_type\{i:l\}(Cmd)@i'
3. (f [decision]) = (\mBbbZ{} \mtimes{} Cmd)
4. (f [propose]) = (\mBbbZ{} \mtimes{} Cmd)
5. (f ``pv11\_p1 adopted``) = (pv11\_p1\_Ballot\_Num() \mtimes{} ((pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd) List))
6. (f ``pv11\_p1 preempted``) = pv11\_p1\_Ballot\_Num()
7. (f ``pv11\_p1 p2b``) = (Id \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} pv11\_p1\_Ballot\_Num())
8. (f ``pv11\_p1 p2a``) = (Id \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd)
9. (f ``pv11\_p1 p1b``)
= (Id \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} ((pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd) List))
10. (f ``pv11\_p1 p1a``) = (Id \mtimes{} pv11\_p1\_Ballot\_Num())
11. f \mmember{} Name {}\mrightarrow{} Type
12. es : EO+(Message(f))@i'
13. e1 : E@i
14. e2 : E@i
15. accpts : bag(Id)@i
16. ldrs : bag(Id)@i
17. ldrs$_{uid}$ : Id {}\mrightarrow{} \mBbbZ{}@i
18. reps : bag(Id)@i
19. i1 : Id@i
20. i2 : Id@i
21. l1 : Id@i
22. l2 : Id@i
23. b : pv11\_p1\_Ballot\_Num()@i
24. s : \mBbbZ{}@i
25. p1 : Cmd@i
26. p2 : Cmd@i
27. Inj(Id;\mBbbZ{};ldrs$_{uid}$)@i
28. pv11\_p1\_message-constraint\{paxos-v11-part1.esh:o\}(Cmd; accpts; ldrs; ldrs$_{uid}\000C$; reps; f; es)@i
29. pv11\_p1\_p2a'send(Cmd;f) i1 <l1, b, s, p1> \mmember{} pv11\_p1\_main(Cmd;accpts;ldrs;ldrs$_{uid\mbackslash{}\000Cff7d$;reps;f)(e1)@i
30. pv11\_p1\_p2a'send(Cmd;f) i2 <l2, b, s, p2> \mmember{} pv11\_p1\_main(Cmd;accpts;ldrs;ldrs$_{uid\mbackslash{}\000Cff7d$;reps;f)(e2)@i
\mvdash{} p1 = p2
By
Latex:
(InstLemma `pv11\_p1\_A4\_C1` [\mkleeneopen{}Cmd\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e1\mkleeneclose{};\mkleeneopen{}e2\mkleeneclose{};\mkleeneopen{}accpts\mkleeneclose{};\mkleeneopen{}ldrs\mkleeneclose{};\mkleeneopen{}ldrs$_{uid}\mbackslash{}ff\000C24\mkleeneclose{};\mkleeneopen{}reps\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}[]\mkleeneclose{};
\mkleeneopen{}[]\mkleeneclose{};\mkleeneopen{}i1\mkleeneclose{};\mkleeneopen{}i2\mkleeneclose{};\mkleeneopen{}l1\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{};\mkleeneopen{}p1\mkleeneclose{};\mkleeneopen{}p2\mkleeneclose{}]\mcdot{}
THEN Auto
THEN OrRight
THEN Auto
THEN Assert \mkleeneopen{}l1 = l2\mkleeneclose{}\mcdot{}
THEN Auto
THEN RepeatFor 2 ((FLemma `pv11\_p1\_bnum\_p2a` [-2] THENA Auto))
THEN ExRepD
THEN SimpleAssertReasoning
THEN (HypSubst' (-3) (-1) THENA Auto)
THEN RepUR ``pv11\_p1\_Ballot\_Num pv11\_p1\_mk\_bnum`` (-1)
THEN Auto)
Home
Index