Step
*
of Lemma
Process-apply_wf
∀[M:Type ─→ Type]
∀[P:Process(P.M[P])]. ∀[m:pMsg(P.M[P])]. (Process-apply(P;m) ∈ Process(P.M[P]) × pExt(P.M[P]))
supposing Continuous+(P.M[P])
BY
{ ((ProveWfLemma THEN GenConclAtAddrType ⌈pMsg(P.M[P]) ─→ (Process(P.M[P]) × pExt(P.M[P]))⌉ [2;1]⋅)
THEN Auto
THEN DoSubsume
THEN Auto) }
1
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. P : Process(P.M[P])
4. m : pMsg(P.M[P])
5. P = P ∈ Process(P.M[P])
⊢ Process(P.M[P]) ⊆r (pMsg(P.M[P]) ─→ (Process(P.M[P]) × pExt(P.M[P])))
Latex:
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]
\mforall{}[P:Process(P.M[P])]. \mforall{}[m:pMsg(P.M[P])]. (Process-apply(P;m) \mmember{} Process(P.M[P]) \mtimes{} pExt(P.M[P]))
supposing Continuous+(P.M[P])
By
Latex:
((ProveWfLemma THEN GenConclAtAddrType \mkleeneopen{}pMsg(P.M[P]) {}\mrightarrow{} (Process(P.M[P]) \mtimes{} pExt(P.M[P]))\mkleeneclose{} [2;1]\mcdot{})
THEN Auto
THEN DoSubsume
THEN Auto)
Home
Index