Nuprl Lemma : dataflow-equiv_inversion

[A,B:Type]. ∀[f,g:dataflow(A;B)].  g ≡ supposing f ≡ g


Proof




Definitions occuring in Statement :  dataflow-equiv: d1 ≡ d2 dataflow: dataflow(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Lemmas :  list_wf dataflow-equiv_wf dataflow_wf

Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:dataflow(A;B)].    g  \mequiv{}  f  supposing  f  \mequiv{}  g



Date html generated: 2015_07_23-AM-11_06_32
Last ObjectModification: 2015_01_29-AM-00_11_02

Home Index