Nuprl Lemma : dataflow_subtype

[A1,B1,A2,B2:Type].  (dataflow(A1;B1) ⊆dataflow(A2;B2)) supposing ((B1 ⊆B2) and (A2 ⊆A1))


Proof




Definitions occuring in Statement :  dataflow: dataflow(A;B) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Lemmas :  corec-subtype-corec2 subtype_rel_dep_function subtype_rel_product subtype_rel_wf

Latex:
\mforall{}[A1,B1,A2,B2:Type].    (dataflow(A1;B1)  \msubseteq{}r  dataflow(A2;B2))  supposing  ((B1  \msubseteq{}r  B2)  and  (A2  \msubseteq{}r  A1))



Date html generated: 2015_07_23-AM-11_05_14
Last ObjectModification: 2015_01_28-PM-11_34_33

Home Index