Nuprl Lemma : corec-subtype-corec2

[F,G:Type ⟶ Type].  corec(T.F[T]) ⊆corec(T.G[T]) supposing ∀A,B:Type.  ((A ⊆B)  (F[A] ⊆G[B]))


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a corec: corec(T.F[T]) subtype_rel: A ⊆B so_apply: x[s] nat: prop: so_lambda: λ2x.t[x] implies:  Q false: False ge: i ≥  guard: {T} all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_wf primrec_wf top_wf int_seg_wf all_wf subtype_rel_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-le-2 not-equal-2 le_wf primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality isect_memberEquality extract_by_obid hypothesis isectEquality thin instantiate sqequalHypSubstitution isectElimination universeEquality hypothesisEquality applyEquality functionExtensionality cumulativity natural_numberEquality setElimination rename sqequalRule axiomEquality functionEquality because_Cache equalityTransitivity equalitySymmetry intWeakElimination lambdaFormation independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination voidEquality unionElimination independent_pairFormation productElimination addEquality intEquality minusEquality equalityElimination dependent_pairFormation promote_hyp dependent_set_memberEquality

Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    corec(T.F[T])  \msubseteq{}r  corec(T.G[T])  supposing  \mforall{}A,B:Type.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  (F[A]  \msubseteq{}r  G[B]))



Date html generated: 2017_04_14-AM-07_46_59
Last ObjectModification: 2017_02_27-PM-03_17_32

Theory : co-recursion


Home Index