Nuprl Lemma : fix_wf_dataflow
∀[A,B:Type]. ∀[F:∩P:Type. (P ─→ A ─→ (P × B))]. (fix(F) ∈ dataflow(A;B))
Proof
Definitions occuring in Statement :
dataflow: dataflow(A;B)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fix: fix(F)
,
isect: ∩x:A. B[x]
,
function: x:A ─→ B[x]
,
product: x:A × B[x]
,
universe: Type
Lemmas :
fix_wf_corec-alt-proof
Latex:
\mforall{}[A,B:Type]. \mforall{}[F:\mcap{}P:Type. (P {}\mrightarrow{} A {}\mrightarrow{} (P \mtimes{} B))]. (fix(F) \mmember{} dataflow(A;B))
Date html generated:
2015_07_23-AM-11_05_16
Last ObjectModification:
2015_01_28-PM-11_34_22
Home
Index