Nuprl Lemma : fix_wf_dataflow
∀[A,B:Type]. ∀[F:∩P:Type. (P ─→ A ─→ (P × B))].  (fix(F) ∈ dataflow(A;B))
Proof
Definitions occuring in Statement : 
dataflow: dataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fix: fix(F)
, 
isect: ∩x:A. B[x]
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
fix_wf_corec-alt-proof
Latex:
\mforall{}[A,B:Type].  \mforall{}[F:\mcap{}P:Type.  (P  {}\mrightarrow{}  A  {}\mrightarrow{}  (P  \mtimes{}  B))].    (fix(F)  \mmember{}  dataflow(A;B))
Date html generated:
2015_07_23-AM-11_05_16
Last ObjectModification:
2015_01_28-PM-11_34_22
Home
Index