Nuprl Lemma : fix_wf_corec-alt-proof

[F:Type ⟶ Type]. ∀[G:⋂T:Type. (T ⟶ F[T])].  (fix(G) ∈ corec(T.F[T]))


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  fix_wf_corec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality universeEquality isect_memberEquality equalityTransitivity equalitySymmetry hypothesis isectEquality cumulativity functionEquality axiomEquality because_Cache

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[G:\mcap{}T:Type.  (T  {}\mrightarrow{}  F[T])].    (fix(G)  \mmember{}  corec(T.F[T]))



Date html generated: 2016_05_14-AM-06_19_15
Last ObjectModification: 2015_12_26-PM-00_02_26

Theory : co-recursion


Home Index