Step
*
of Lemma
lg-acyclic-remove
∀[T:Type]. ∀[g:LabeledGraph(T)]. ∀[i:ℕlg-size(g)]. lg-acyclic(lg-remove(g;i)) supposing lg-acyclic(g)
BY
{ ((Auto THEN RepeatFor 2 ((D 0 THEN Auto)))
THEN Subst' lg-size(lg-remove(g;i)) = (lg-size(g) - 1) ∈ ℤ -2
THEN RWW "lg-size-remove" 0
THEN Auto
THEN ((With ⌈if a <z i then a else a + 1 fi ⌉ (D 3)⋅ THENM D -1) THENA Auto)
THEN BLemma `lg-connected-remove`
THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[g:LabeledGraph(T)].
\mforall{}[i:\mBbbN{}lg-size(g)]. lg-acyclic(lg-remove(g;i)) supposing lg-acyclic(g)
By
Latex:
((Auto THEN RepeatFor 2 ((D 0 THEN Auto)))
THEN Subst' lg-size(lg-remove(g;i)) = (lg-size(g) - 1) -2
THEN RWW "lg-size-remove" 0
THEN Auto
THEN ((With \mkleeneopen{}if a <z i then a else a + 1 fi \mkleeneclose{} (D 3)\mcdot{} THENM D -1) THENA Auto)
THEN BLemma `lg-connected-remove`
THEN Auto)
Home
Index