Step
*
1
1
of Lemma
lg-all-append
1. [T] : Type
2. [P] : T ─→ ℙ
3. g1 : LabeledGraph(T)
4. lg-size(g1) ∈ ℕ
5. g1 ∈ Top List
6. g1 ∈ (T × ℕlg-size(g1) List × (ℕlg-size(g1) List)) List
7. g2 : LabeledGraph(T)
8. lg-size(g2) ∈ ℕ
9. g2 ∈ Top List
10. g2 ∈ (T × ℕlg-size(g2) List × (ℕlg-size(g2) List)) List
11. lg-size(lg-append(g1;g2)) = (lg-size(g1) + lg-size(g2)) ∈ ℤ
12. ∀n:ℕlg-size(lg-append(g1;g2)). P[lg-label(lg-append(g1;g2);n)]@i
13. n : ℕlg-size(g1)@i
⊢ P[lg-label(g1;n)]
BY
{ ((Assert lg-label(g1;n) ∈ T BY
(BLemma `lg-label_wf` THEN Auto))
THEN InstHyp [⌈n⌉] (-3)⋅
THEN Auto'
THEN MoveToConcl (-1)
THEN (InstLemma `lg-label-append` [⌈T⌉;⌈g1⌉;⌈g2⌉]⋅ THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN AutoSplit) }
Latex:
Latex:
1. [T] : Type
2. [P] : T {}\mrightarrow{} \mBbbP{}
3. g1 : LabeledGraph(T)
4. lg-size(g1) \mmember{} \mBbbN{}
5. g1 \mmember{} Top List
6. g1 \mmember{} (T \mtimes{} \mBbbN{}lg-size(g1) List \mtimes{} (\mBbbN{}lg-size(g1) List)) List
7. g2 : LabeledGraph(T)
8. lg-size(g2) \mmember{} \mBbbN{}
9. g2 \mmember{} Top List
10. g2 \mmember{} (T \mtimes{} \mBbbN{}lg-size(g2) List \mtimes{} (\mBbbN{}lg-size(g2) List)) List
11. lg-size(lg-append(g1;g2)) = (lg-size(g1) + lg-size(g2))
12. \mforall{}n:\mBbbN{}lg-size(lg-append(g1;g2)). P[lg-label(lg-append(g1;g2);n)]@i
13. n : \mBbbN{}lg-size(g1)@i
\mvdash{} P[lg-label(g1;n)]
By
Latex:
((Assert lg-label(g1;n) \mmember{} T BY
(BLemma `lg-label\_wf` THEN Auto))
THEN InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-3)\mcdot{}
THEN Auto'
THEN MoveToConcl (-1)
THEN (InstLemma `lg-label-append` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}g1\mkleeneclose{};\mkleeneopen{}g2\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN AutoSplit)
Home
Index