Step
*
of Lemma
lg-filter_wf
∀[T:Type]. ∀[P:T ─→ 𝔹]. ∀[G:LabeledGraph(T)]. (lg-filter(P;G) ∈ LabeledGraph(T))
BY
{ (Auto THEN Unfold `lg-filter` 0 THEN (Assert G ∈ (T × Top) List BY (Dlg 3 THEN Auto))) }
1
1. T : Type
2. P : T ─→ 𝔹
3. G : LabeledGraph(T)
4. G ∈ (T × Top) List
⊢ let rms = filter(λi.(¬b(P (fst(G[i]))));upto(lg-size(G))) in
reduce(λx,g. lg-remove(g;x);G;rms) ∈ LabeledGraph(T)
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[G:LabeledGraph(T)]. (lg-filter(P;G) \mmember{} LabeledGraph(T))
By
Latex:
(Auto THEN Unfold `lg-filter` 0 THEN (Assert G \mmember{} (T \mtimes{} Top) List BY (Dlg 3 THEN Auto)))
Home
Index