Step
*
1
2
of Lemma
lg-remove-noop
1. T : Type
2. g : LabeledGraph(T)
3. g ∈ Top List
4. g ∈ (T × ℕlg-size(g) List × (ℕlg-size(g) List)) List
5. lg-size(g) ∈ ℕ
6. x : ℕ
7. lg-size(g) ≤ x
8. L : (T × ℕlg-size(g) List × (ℕlg-size(g) List)) List@i
9. g = L ∈ ((T × ℕlg-size(g) List × (ℕlg-size(g) List)) List)@i
10. ||L|| ≤ x
⊢ lg-remove(L;x) ~ L
BY
{ (MoveToConcl (-1)
THEN Thin (-1)
THEN MoveToConcl (-2)
THEN MoveToConcl (-1)
THEN RepeatFor 2 (Thin 3)
THEN (GenConclAtAddr [1;1;2;1;1;2]⋅ THENA Auto)
THEN All Thin) }
1
1. T : Type
2. x : ℕ
3. v : ℕ@i
⊢ ∀L:(T × ℕv List × (ℕv List)) List. ((v ≤ x)
⇒ (||L|| ≤ x)
⇒ (lg-remove(L;x) ~ L))
Latex:
Latex:
1. T : Type
2. g : LabeledGraph(T)
3. g \mmember{} Top List
4. g \mmember{} (T \mtimes{} \mBbbN{}lg-size(g) List \mtimes{} (\mBbbN{}lg-size(g) List)) List
5. lg-size(g) \mmember{} \mBbbN{}
6. x : \mBbbN{}
7. lg-size(g) \mleq{} x
8. L : (T \mtimes{} \mBbbN{}lg-size(g) List \mtimes{} (\mBbbN{}lg-size(g) List)) List@i
9. g = L@i
10. ||L|| \mleq{} x
\mvdash{} lg-remove(L;x) \msim{} L
By
Latex:
(MoveToConcl (-1)
THEN Thin (-1)
THEN MoveToConcl (-2)
THEN MoveToConcl (-1)
THEN RepeatFor 2 (Thin 3)
THEN (GenConclAtAddr [1;1;2;1;1;2]\mcdot{} THENA Auto)
THEN All Thin)
Home
Index