Nuprl Lemma : norm-component_wf

[M:Type ─→ Type]. norm-component ∈ id-fun(component(P.M[P])) supposing M[Top]


Proof




Definitions occuring in Statement :  norm-component: norm-component component: component(P.M[P]) id-fun: id-fun(T) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  norm-pair_wf Id_wf Process_wf atom2-value-type Process-value-type top_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  norm-component  \mmember{}  id-fun(component(P.M[P]))  supposing  M[Top]



Date html generated: 2015_07_23-AM-11_07_55
Last ObjectModification: 2015_01_29-AM-00_10_01

Home Index