Nuprl Lemma : norm-component_wf
∀[M:Type ─→ Type]. norm-component ∈ id-fun(component(P.M[P])) supposing M[Top]
Proof
Definitions occuring in Statement : 
norm-component: norm-component, 
component: component(P.M[P]), 
id-fun: id-fun(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ─→ B[x], 
universe: Type
Lemmas : 
norm-pair_wf, 
Id_wf, 
Process_wf, 
atom2-value-type, 
Process-value-type, 
top_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  norm-component  \mmember{}  id-fun(component(P.M[P]))  supposing  M[Top]
Date html generated:
2015_07_23-AM-11_07_55
Last ObjectModification:
2015_01_29-AM-00_10_01
Home
Index