Nuprl Lemma : norm-pair_wf
∀[A:Type]. ∀[B:A ⟶ Type].
  (∀[Na:id-fun(A)]. ∀[Nb:⋂a:A. id-fun(B[a])].  (norm-pair(Na;Nb) ∈ id-fun(a:A × B[a]))) supposing 
     ((∀a:A. value-type(B[a])) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
norm-pair: norm-pair(Na;Nb)
, 
id-fun: id-fun(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
has-value: (a)↓
, 
norm-pair: norm-pair(Na;Nb)
, 
top: Top
, 
id-fun: id-fun(T)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
value-type_wf, 
all_wf, 
id-fun_wf, 
and_wf, 
subtype_rel-equal, 
set_wf, 
set-value-type, 
equal_wf, 
value-type-has-value, 
top_wf
Rules used in proof : 
universeEquality, 
cumulativity, 
because_Cache, 
axiomEquality, 
independent_functionElimination, 
dependent_functionElimination, 
productEquality, 
applyLambdaEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
dependent_pairEquality, 
rename, 
setElimination, 
lambdaFormation, 
functionEquality, 
isectEquality, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
lambdaEquality, 
independent_isectElimination, 
hypothesisEquality, 
setEquality, 
isectElimination, 
callbyvalueReduce, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
functionExtensionality, 
sqequalRule, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    (\mforall{}[Na:id-fun(A)].  \mforall{}[Nb:\mcap{}a:A.  id-fun(B[a])].    (norm-pair(Na;Nb)  \mmember{}  id-fun(a:A  \mtimes{}  B[a])))  supposing 
          ((\mforall{}a:A.  value-type(B[a]))  and 
          value-type(A))
Date html generated:
2018_07_25-PM-01_29_53
Last ObjectModification:
2018_07_14-PM-01_22_37
Theory : call!by!value_2
Home
Index