Nuprl Lemma : id-fun_wf
∀[T:Type]. (id-fun(T) ∈ Type)
Proof
Definitions occuring in Statement : 
id-fun: id-fun(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
id-fun: id-fun(T)
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (id-fun(T)  \mmember{}  Type)
Date html generated:
2017_04_14-AM-07_22_02
Last ObjectModification:
2017_02_27-PM-02_55_13
Theory : call!by!value_2
Home
Index