Nuprl Lemma : id-fun_wf

[T:Type]. (id-fun(T) ∈ Type)


Proof




Definitions occuring in Statement :  id-fun: id-fun(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T id-fun: id-fun(T) prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality cumulativity hypothesisEquality setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (id-fun(T)  \mmember{}  Type)



Date html generated: 2017_04_14-AM-07_22_02
Last ObjectModification: 2017_02_27-PM-02_55_13

Theory : call!by!value_2


Home Index