Step
*
of Lemma
norm-pair_wf
∀[A:Type]. ∀[B:A ⟶ Type].
(∀[Na:id-fun(A)]. ∀[Nb:⋂a:A. id-fun(B[a])]. (norm-pair(Na;Nb) ∈ id-fun(a:A × B[a]))) supposing
((∀a:A. value-type(B[a])) and
value-type(A))
BY
{ (Auto
THEN All (Unfold `id-fun`)
THEN (ExtWith [`p'] [⌜Top ⟶ Top⌝]⋅ THENA Auto)
THEN D -1
THEN RepUR ``norm-pair`` 0
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN (GenConclAtAddr [2;1] THEN D -2 THEN GenConclAtAddr [2;2]⋅ THEN D -2 THEN Auto)) }
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type].
(\mforall{}[Na:id-fun(A)]. \mforall{}[Nb:\mcap{}a:A. id-fun(B[a])]. (norm-pair(Na;Nb) \mmember{} id-fun(a:A \mtimes{} B[a]))) supposing
((\mforall{}a:A. value-type(B[a])) and
value-type(A))
By
Latex:
(Auto
THEN All (Unfold `id-fun`)
THEN (ExtWith [`p'] [\mkleeneopen{}Top {}\mrightarrow{} Top\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN RepUR ``norm-pair`` 0
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN (GenConclAtAddr [2;1] THEN D -2 THEN GenConclAtAddr [2;2]\mcdot{} THEN D -2 THEN Auto))
Home
Index