Step * 1 1 of Lemma pRun-invariant2

.....assertion..... 
1. [M] Type ─→ Type
2. Continuous+(P.M[P])
3. n2m : ℕ ─→ pMsg(P.M[P])@i
4. l2m Id ─→ pMsg(P.M[P])@i
5. S0 System(P.M[P])@i
6. env pEnvType(P.M[P])@i
7. fulpRunType(P.M[P])@i
8. pRun(S0;env;n2m;l2m) r ∈ fulpRunType(P.M[P])@i
9. r ∈ pRunType(P.M[P])
10. ∀e:runEvents(r)
      sub-mset(Process(P.M[P]); map(λP.(fst(Process-apply(P;run-event-msg(r;e))));run-prior-state(S0;r;e));
               run-event-state(r;e))@i
⊢ ∀t:ℕ. ∀e1,e2:runEvents(r).
    ((run-event-loc(e1) run-event-loc(e2) ∈ Id)
     (run-event-step(e1) ≤ run-event-step(e2))
     run-event-step(e2) < t
     (∀P:Process(P.M[P])
          ((P ∈ run-prior-state(S0;r;e1))
           (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2))) ∈ run-event-state(r;e2)))))
BY
(InductionOnNat
   THEN Auto'
   THEN OnMaybeHyp 10 (\h. ((InstHyp [⌈e2⌉h⋅ THENA Complete (Auto))
                            THEN (FLemma `sub-mset-contains` [-1] THENA CompleteAuto)
                            THEN Unfold `l_contains` (-1)
                            THEN (RWO "l_all_iff" (-1) THENA Auto)
                            THEN ((BackThruHyp' (-1) THENA CompleteAuto) THEN RepeatFor (Thin (-1)))⋅))⋅}

1
1. [M] Type ─→ Type
2. Continuous+(P.M[P])
3. n2m : ℕ ─→ pMsg(P.M[P])@i
4. l2m Id ─→ pMsg(P.M[P])@i
5. S0 System(P.M[P])@i
6. env pEnvType(P.M[P])@i
7. fulpRunType(P.M[P])@i
8. pRun(S0;env;n2m;l2m) r ∈ fulpRunType(P.M[P])@i
9. r ∈ pRunType(P.M[P])
10. ∀e:runEvents(r)
      sub-mset(Process(P.M[P]); map(λP.(fst(Process-apply(P;run-event-msg(r;e))));run-prior-state(S0;r;e));
               run-event-state(r;e))@i
11. : ℤ@i
12. \\%5 0 < t@i
13. ∀e1,e2:runEvents(r).
      ((run-event-loc(e1) run-event-loc(e2) ∈ Id)
       (run-event-step(e1) ≤ run-event-step(e2))
       run-event-step(e2) < 1
       (∀P:Process(P.M[P])
            ((P ∈ run-prior-state(S0;r;e1))
             (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2))) ∈ run-event-state(r;e2)))))@i
14. e1 runEvents(r)@i
15. e2 runEvents(r)@i
16. run-event-loc(e1) run-event-loc(e2) ∈ Id@i
17. run-event-step(e1) ≤ run-event-step(e2)@i
18. run-event-step(e2) < t@i
19. Process(P.M[P])@i
20. (P ∈ run-prior-state(S0;r;e1))@i
⊢ (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2)))
    ∈ map(λP.(fst(Process-apply(P;run-event-msg(r;e2))));run-prior-state(S0;r;e2)))


Latex:



Latex:
.....assertion..... 
1.  [M]  :  Type  {}\mrightarrow{}  Type
2.  Continuous+(P.M[P])
3.  n2m  :  \mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])@i
4.  l2m  :  Id  {}\mrightarrow{}  pMsg(P.M[P])@i
5.  S0  :  System(P.M[P])@i
6.  env  :  pEnvType(P.M[P])@i
7.  r  :  fulpRunType(P.M[P])@i
8.  pRun(S0;env;n2m;l2m)  =  r@i
9.  r  \mmember{}  pRunType(P.M[P])
10.  \mforall{}e:runEvents(r)
            sub-mset(Process(P.M[P]);  map(\mlambda{}P.(fst(Process-apply(P;run-event-msg(r;e))));
                                                                        run-prior-state(S0;r;e));  run-event-state(r;e))@i
\mvdash{}  \mforall{}t:\mBbbN{}.  \mforall{}e1,e2:runEvents(r).
        ((run-event-loc(e1)  =  run-event-loc(e2))
        {}\mRightarrow{}  (run-event-step(e1)  \mleq{}  run-event-step(e2))
        {}\mRightarrow{}  run-event-step(e2)  <  t
        {}\mRightarrow{}  (\mforall{}P:Process(P.M[P])
                    ((P  \mmember{}  run-prior-state(S0;r;e1))
                    {}\mRightarrow{}  (iterate-Process(P;map(\mlambda{}e.run-event-msg(r;e);run-event-interval(r;e1;e2)))
                              \mmember{}  run-event-state(r;e2)))))


By


Latex:
(InductionOnNat
  THEN  Auto'
  THEN  OnMaybeHyp  10  (\mbackslash{}h.  ((InstHyp  [\mkleeneopen{}e2\mkleeneclose{}]  h\mcdot{}  THENA  Complete  (Auto))
                                                    THEN  (FLemma  `sub-mset-contains`  [-1]  THENA  CompleteAuto)
                                                    THEN  Unfold  `l\_contains`  (-1)
                                                    THEN  (RWO  "l\_all\_iff"  (-1)  THENA  Auto)
                                                    THEN  ((BackThruHyp'  (-1)  THENA  CompleteAuto)  THEN  RepeatFor  2  (Thin  (-1)))
                                                    \mcdot{}))\mcdot{})




Home Index