Step
*
of Lemma
pRun_wf
∀[M:Type ─→ Type]
  ∀[nat2msg:ℕ ─→ pMsg(P.M[P])]. ∀[loc2msg:Id ─→ pMsg(P.M[P])]. ∀[S0:System(P.M[P])]. ∀[env:pEnvType(P.M[P])].
    (pRun(S0;env;nat2msg;loc2msg) ∈ fulpRunType(P.M[P])) 
  supposing Continuous+(P.M[P])
BY
{ (Unfold `fulpRunType` 0 THEN (Auto THEN ExtWith [`t'][⌈Top ─→ Top⌉]⋅ THEN Auto)⋅) }
1
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. nat2msg : ℕ ─→ pMsg(P.M[P])
4. loc2msg : Id ─→ pMsg(P.M[P])
5. S0 : System(P.M[P])
6. env : pEnvType(P.M[P])
7. t : ℕ
⊢ pRun(S0;env;nat2msg;loc2msg) t ∈ ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P])
Latex:
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[nat2msg:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[loc2msg:Id  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[S0:System(P.M[P])].
    \mforall{}[env:pEnvType(P.M[P])].
        (pRun(S0;env;nat2msg;loc2msg)  \mmember{}  fulpRunType(P.M[P])) 
    supposing  Continuous+(P.M[P])
By
Latex:
(Unfold  `fulpRunType`  0  THEN  (Auto  THEN  ExtWith  [`t'][\mkleeneopen{}Top  {}\mrightarrow{}  Top\mkleeneclose{}]\mcdot{}  THEN  Auto)\mcdot{})
Home
Index