Nuprl Lemma : rec-dataflow-state_wf

[S,A,B:Type]. ∀[s0:S]. ∀[next:S ─→ A ─→ (S × B)]. ∀[L:A List].  (rec-dataflow-state(s0;s,m.next[s;m];L) ∈ S)


Proof




Definitions occuring in Statement :  rec-dataflow-state: rec-dataflow-state(s0;s,m.next[s; m];L) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  list_accum_wf list_wf

Latex:
\mforall{}[S,A,B:Type].  \mforall{}[s0:S].  \mforall{}[next:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  B)].  \mforall{}[L:A  List].
    (rec-dataflow-state(s0;s,m.next[s;m];L)  \mmember{}  S)



Date html generated: 2015_07_23-AM-11_05_30
Last ObjectModification: 2015_01_28-PM-11_34_40

Home Index