Step
*
1
of Lemma
reliable-env-property2
1. [M] : Type ─→ Type
2. Continuous+(P.M[P])
3. S : InitialSystem(P.M[P])@i
4. n2m : ℕ ─→ pMsg(P.M[P])@i
5. l2m : Id ─→ pMsg(P.M[P])@i
6. env : pEnvType(P.M[P])@i
7. pRun(S;env;n2m;l2m) ∈ pRunType(P.M[P])
8. reliable-env(env; pRun(S;env;n2m;l2m))@i
9. ∀tn:run-msg-commands(pRun(S;env;n2m;l2m))
     ∃e:runEvents(pRun(S;env;n2m;l2m))
      let t,n = tn 
      in (run-info(pRun(S;env;n2m;l2m);e)
         = intransit-to-info(n2m;l2m;pRun(S;env;n2m;l2m);env;run-event-step(e);run-command(pRun(S;env;n2m;l2m);t;n))
         ∈ (ℤ × Id × pMsg(P.M[P])))
         ∧ (run-event-loc(e) = (fst(snd(run-command(pRun(S;env;n2m;l2m);t;n)))) ∈ Id)
10. e : runEvents(pRun(S;env;n2m;l2m))@i
11. P : Process(P.M[P])@i
12. (P ∈ run-event-state-when(pRun(S;env;n2m;l2m);e))@i
13. 0 < fst(e)
⊢ ∀p∈snd((P (snd(run-info(pRun(S;env;n2m;l2m);e))))).let y,c = p 
                                                     in (com-kind(c) ∈ ``msg choose new``)
                                                        
⇒ (∃e':runEvents(pRun(S;env;n2m;l2m))
                                                             ((run-event-loc(e') = y ∈ Id)
                                                             ∧ (e run-lt(pRun(S;env;n2m;l2m)) e')
                                                             ∧ (∃n:ℕ
                                                                 ∃nm:Id
                                                                  ((snd(run-info(pRun(S;env;n2m;l2m);e')))
                                                                  = command-to-msg(c;n2m n;l2m nm)
                                                                  ∈ pMsg(P.M[P])))
                                                             ∧ ((run-cause(pRun(S;env;n2m;l2m)) e')
                                                               = (inl e)
                                                               ∈ (runEvents(pRun(S;env;n2m;l2m))?))))
BY
{ (GenConclAtAddr [1;1;2;1] ⋅
   THEN D -2
   THEN Reduce 0
   THEN RenameVar `ms' (-2)
   THEN Subst' P ms ~ Process-apply(P;ms) 0
   THEN Try ((Unfold `Process-apply` 0 THEN Complete (Auto)))
   THEN (RepeatFor 2 (DVar `e')
         THEN RenameVar `t' (-9)
         THEN RenameVar `x' (-8)
         THEN All Reduce
         THEN RepUR ``run-info`` -1
         THEN GenConclAtAddr [1;1] ⋅
         THEN D -2
         THEN RenameVar `G' (-2)
         THEN Reduce 0
         THEN RepUR ``pExt`` -2
         THEN D 0
         THEN Auto
         THEN (GenConclAtAddrType ⌈Id × pCom(P.M[P])⌉ [1]⋅ THENA Auto)
         THEN D -2
         THEN Reduce 0
         THEN Auto)⋅)⋅ }
1
1. [M] : Type ─→ Type
2. Continuous+(P.M[P])
3. S : InitialSystem(P.M[P])@i
4. n2m : ℕ ─→ pMsg(P.M[P])@i
5. l2m : Id ─→ pMsg(P.M[P])@i
6. env : pEnvType(P.M[P])@i
7. pRun(S;env;n2m;l2m) ∈ pRunType(P.M[P])
8. reliable-env(env; pRun(S;env;n2m;l2m))@i
9. ∀tn:run-msg-commands(pRun(S;env;n2m;l2m))
     ∃e:runEvents(pRun(S;env;n2m;l2m))
      let t,n = tn 
      in (run-info(pRun(S;env;n2m;l2m);e)
         = intransit-to-info(n2m;l2m;pRun(S;env;n2m;l2m);env;run-event-step(e);run-command(pRun(S;env;n2m;l2m);t;n))
         ∈ (ℤ × Id × pMsg(P.M[P])))
         ∧ (run-event-loc(e) = (fst(snd(run-command(pRun(S;env;n2m;l2m);t;n)))) ∈ Id)
10. t : ℕ@i
11. x : Id@i
12. \\%12 : ↑is-run-event(pRun(S;env;n2m;l2m);t;x)@i
13. P : Process(P.M[P])@i
14. (P ∈ run-event-state-when(pRun(S;env;n2m;l2m);<t, x>))@i
15. 0 < t
16. v1 : ℤ × Id@i
17. ms : pMsg(P.M[P])@i
18. let info,S = pRun(S;env;n2m;l2m) t in let ev,z,m = outl(info) in <ev, m> = <v1, ms> ∈ (ℤ × Id × pMsg(P.M[P]))@i
19. v2 : Process(P.M[P])@i
20. G : LabeledDAG(Id × pCom(P.M[P]))@i
21. Process-apply(P;ms) = <v2, G> ∈ (Process(P.M[P]) × pExt(P.M[P]))@i
22. n : ℕlg-size(G)@i
23. v3 : Id@i
24. v4 : pCom(P.M[P])@i
25. lg-label(G;n) = <v3, v4> ∈ (Id × pCom(P.M[P]))@i
26. (com-kind(v4) ∈ ``msg choose new``)@i
⊢ ∃e':runEvents(pRun(S;env;n2m;l2m))
   ((run-event-loc(e') = v3 ∈ Id)
   ∧ (<t, x> run-lt(pRun(S;env;n2m;l2m)) e')
   ∧ (∃n:ℕ. ∃nm:Id. ((snd(run-info(pRun(S;env;n2m;l2m);e'))) = command-to-msg(v4;n2m n;l2m nm) ∈ pMsg(P.M[P])))
   ∧ ((run-cause(pRun(S;env;n2m;l2m)) e') = (inl <t, x>) ∈ (runEvents(pRun(S;env;n2m;l2m))?)))
Latex:
Latex:
1.  [M]  :  Type  {}\mrightarrow{}  Type
2.  Continuous+(P.M[P])
3.  S  :  InitialSystem(P.M[P])@i
4.  n2m  :  \mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])@i
5.  l2m  :  Id  {}\mrightarrow{}  pMsg(P.M[P])@i
6.  env  :  pEnvType(P.M[P])@i
7.  pRun(S;env;n2m;l2m)  \mmember{}  pRunType(P.M[P])
8.  reliable-env(env;  pRun(S;env;n2m;l2m))@i
9.  \mforall{}tn:run-msg-commands(pRun(S;env;n2m;l2m))
          \mexists{}e:runEvents(pRun(S;env;n2m;l2m))
            let  t,n  =  tn 
            in  ...
                  \mwedge{}  (run-event-loc(e)  =  (fst(snd(run-command(pRun(S;env;n2m;l2m);t;n)))))
10.  e  :  runEvents(pRun(S;env;n2m;l2m))@i
11.  P  :  Process(P.M[P])@i
12.  (P  \mmember{}  run-event-state-when(pRun(S;env;n2m;l2m);e))@i
13.  0  <  fst(e)
\mvdash{}  \mforall{}p\mmember{}snd((P  (snd(run-info(pRun(S;env;n2m;l2m);e))))).
      let  y,c  =  p 
      in  (com-kind(c)  \mmember{}  ``msg  choose  new``)
            {}\mRightarrow{}  (\mexists{}e':runEvents(pRun(S;env;n2m;l2m))
                      ((run-event-loc(e')  =  y)
                      \mwedge{}  (e  run-lt(pRun(S;env;n2m;l2m))  e')
                      \mwedge{}  (\mexists{}n:\mBbbN{}
                              \mexists{}nm:Id.  ((snd(run-info(pRun(S;env;n2m;l2m);e')))  =  command-to-msg(c;n2m  n;l2m  nm)))
                      \mwedge{}  ((run-cause(pRun(S;env;n2m;l2m))  e')  =  (inl  e))))
By
Latex:
(GenConclAtAddr  [1;1;2;1]  \mcdot{}
  THEN  D  -2
  THEN  Reduce  0
  THEN  RenameVar  `ms'  (-2)
  THEN  Subst'  P  ms  \msim{}  Process-apply(P;ms)  0
  THEN  Try  ((Unfold  `Process-apply`  0  THEN  Complete  (Auto)))
  THEN  (RepeatFor  2  (DVar  `e')
              THEN  RenameVar  `t'  (-9)
              THEN  RenameVar  `x'  (-8)
              THEN  All  Reduce
              THEN  RepUR  ``run-info``  -1
              THEN  GenConclAtAddr  [1;1]  \mcdot{}
              THEN  D  -2
              THEN  RenameVar  `G'  (-2)
              THEN  Reduce  0
              THEN  RepUR  ``pExt``  -2
              THEN  D  0
              THEN  Auto
              THEN  (GenConclAtAddrType  \mkleeneopen{}Id  \mtimes{}  pCom(P.M[P])\mkleeneclose{}  [1]\mcdot{}  THENA  Auto)
              THEN  D  -2
              THEN  Reduce  0
              THEN  Auto)\mcdot{})\mcdot{}
Home
Index