Nuprl Lemma : run-info_wf
∀[M:Type ─→ Type]. ∀[r:pRunType(P.M[P])]. ∀[e:runEvents(r)]. (run-info(r;e) ∈ ℤ × Id × pMsg(P.M[P]))
Proof
Definitions occuring in Statement :
runEvents: runEvents(r)
,
run-info: run-info(r;e)
,
pRunType: pRunType(T.M[T])
,
pMsg: pMsg(P.M[P])
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
product: x:A × B[x]
,
int: ℤ
,
universe: Type
Lemmas :
Id_wf,
pMsg_wf,
unit_wf2,
top_wf,
ldag_wf,
pInTransit_wf,
assert_wf,
eq_id_wf,
false_wf,
runEvents_wf,
pRunType_wf
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]. \mforall{}[r:pRunType(P.M[P])]. \mforall{}[e:runEvents(r)].
(run-info(r;e) \mmember{} \mBbbZ{} \mtimes{} Id \mtimes{} pMsg(P.M[P]))
Date html generated:
2015_07_23-AM-11_10_35
Last ObjectModification:
2015_01_29-AM-00_07_32
Home
Index