Nuprl Lemma : run-info_wf
∀[M:Type ─→ Type]. ∀[r:pRunType(P.M[P])]. ∀[e:runEvents(r)].  (run-info(r;e) ∈ ℤ × Id × pMsg(P.M[P]))
Proof
Definitions occuring in Statement : 
runEvents: runEvents(r)
, 
run-info: run-info(r;e)
, 
pRunType: pRunType(T.M[T])
, 
pMsg: pMsg(P.M[P])
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
int: ℤ
, 
universe: Type
Lemmas : 
Id_wf, 
pMsg_wf, 
unit_wf2, 
top_wf, 
ldag_wf, 
pInTransit_wf, 
assert_wf, 
eq_id_wf, 
false_wf, 
runEvents_wf, 
pRunType_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[e:runEvents(r)].
    (run-info(r;e)  \mmember{}  \mBbbZ{}  \mtimes{}  Id  \mtimes{}  pMsg(P.M[P]))
Date html generated:
2015_07_23-AM-11_10_35
Last ObjectModification:
2015_01_29-AM-00_07_32
Home
Index