Nuprl Lemma : eq_id_wf

[a,b:Id].  (a b ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq_id: b Id: Id bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  eq_id: b uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B deq: EqDecider(T)
Lemmas referenced :  id-deq_wf deq_wf Id_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality lemma_by_obid hypothesis thin lambdaEquality sqequalHypSubstitution setElimination rename hypothesisEquality isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[a,b:Id].    (a  =  b  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-03_37_14
Last ObjectModification: 2015_12_26-PM-05_58_41

Theory : decidable!equality


Home Index