Nuprl Lemma : eq_id_wf
∀[a,b:Id].  (a = b ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq_id: a = b
, 
Id: Id
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
eq_id: a = b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
deq: EqDecider(T)
Lemmas referenced : 
id-deq_wf, 
deq_wf, 
Id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
lemma_by_obid, 
hypothesis, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b:Id].    (a  =  b  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-PM-03_37_14
Last ObjectModification:
2015_12_26-PM-05_58_41
Theory : decidable!equality
Home
Index