Nuprl Lemma : system-equiv-implies-equal

[M:Type ─→ Type]
  ∀[S1,S2:System(P.M[P])].  S1 S2 ∈ (Top × LabeledDAG(pInTransit(P.M[P]))) supposing system-equiv(P.M[P];S1;S2) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  system-equiv: system-equiv(T.M[T];S1;S2) System: System(P.M[P]) pInTransit: pInTransit(P.M[P]) ldag: LabeledDAG(T) strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] function: x:A ─→ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Lemmas :  system-equiv_wf System_wf strong-type-continuous_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S1,S2:System(P.M[P])].    S1  =  S2  supposing  system-equiv(P.M[P];S1;S2) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_08_15
Last ObjectModification: 2015_01_29-AM-00_09_03

Home Index