Nuprl Lemma : system-equiv_wf

[M:Type ─→ Type]. ∀[S1,S2:System(P.M[P])].  (system-equiv(P.M[P];S1;S2) ∈ ℙsupposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  system-equiv: system-equiv(T.M[T];S1;S2) System: System(P.M[P]) strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  ldag_wf pInTransit_wf length_wf component_wf all_wf int_seg_wf select_wf sq_stable__le less_than_transitivity1 le_weakening Id_wf process-equiv_wf System_wf strong-type-continuous_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S1,S2:System(P.M[P])].    (system-equiv(P.M[P];S1;S2)  \mmember{}  \mBbbP{})  supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_08_14
Last ObjectModification: 2015_01_29-AM-00_09_06

Home Index