Nuprl Lemma : system-equiv_wf
∀[M:Type ─→ Type]. ∀[S1,S2:System(P.M[P])].  (system-equiv(P.M[P];S1;S2) ∈ ℙ) supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
system-equiv: system-equiv(T.M[T];S1;S2)
, 
System: System(P.M[P])
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
ldag_wf, 
pInTransit_wf, 
length_wf, 
component_wf, 
all_wf, 
int_seg_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity1, 
le_weakening, 
Id_wf, 
process-equiv_wf, 
System_wf, 
strong-type-continuous_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S1,S2:System(P.M[P])].    (system-equiv(P.M[P];S1;S2)  \mmember{}  \mBbbP{})  supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_08_14
Last ObjectModification:
2015_01_29-AM-00_09_06
Home
Index