Nuprl Lemma : system-strongly-realizes-and
∀[M:Type ─→ Type]
  ∀[A:pEnvType(P.M[P]) ─→ pRunType(P.M[P]) ─→ ℙ]
    ∀n2m:ℕ ─→ pMsg(P.M[P]). ∀l2m:Id ─→ pMsg(P.M[P]). ∀S1,S2:InitialSystem(P.M[P]).
      ∀[B1,B2:EO+(pMsg(P.M[P])) ─→ ℙ].
        (assuming(env,r.A[env;r])
          S1 |= eo.B1[eo]
        
⇒ assuming(env,r.A[env;r])
            S2 |= eo.B2[eo]
        
⇒ assuming(env,r.A[env;r])
            S1 @ S2 |= eo.B1[eo] ∧ B2[eo]) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
system-strongly-realizes: system-strongly-realizes, 
system-append: S1 @ S2
, 
InitialSystem: InitialSystem(P.M[P])
, 
pEnvType: pEnvType(T.M[T])
, 
pRunType: pRunType(T.M[T])
, 
pMsg: pMsg(P.M[P])
, 
event-ordering+: EO+(Info)
, 
Id: Id
, 
strong-type-continuous: Continuous+(T.F[T])
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
system-append_wf, 
list_wf, 
component_wf, 
ldag_wf, 
pInTransit_wf, 
std-initial_wf, 
lg-all-append, 
equal-wf-T-base
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[A:pEnvType(P.M[P])  {}\mrightarrow{}  pRunType(P.M[P])  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S1,S2:InitialSystem(P.M[P]).
            \mforall{}[B1,B2:EO+(pMsg(P.M[P]))  {}\mrightarrow{}  \mBbbP{}].
                (assuming(env,r.A[env;r])
                    S1  |=  eo.B1[eo]
                {}\mRightarrow{}  assuming(env,r.A[env;r])
                        S2  |=  eo.B2[eo]
                {}\mRightarrow{}  assuming(env,r.A[env;r])
                        S1  @  S2  |=  eo.B1[eo]  \mwedge{}  B2[eo]) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_20_33
Last ObjectModification:
2015_01_28-PM-11_17_57
Home
Index