{ CountComb()  CombinatorDef }

{ Proof }



Definitions occuring in Statement :  CountComb: CountComb() combinator-def: CombinatorDef member: t  T
Definitions :  universe: Type member: t  T equal: s = t natural_number: $n le: A  B prop: function: x:A  B[x] all: x:A. B[x] nat: int: add: n + m less_than: a < b void: Void implies: P  Q false: False not: A set: {x:A| B[x]}  real: subtype: S  T grp_car: Error :grp_car,  subtype_rel: A r B strong-subtype: strong-subtype(A;B) rationals: lambda: x.A[x] isect: x:A. B[x] p-outcome: Outcome PolyAccumComb: PolyAccumComb(B;f;x) CountComb: CountComb()
Lemmas :  PolyAccumComb_wf nat_wf member_wf le_wf

CountComb()  \mmember{}  CombinatorDef


Date html generated: 2010_08_27-PM-08_23_57
Last ObjectModification: 2010_06_23-PM-05_25_32

Home Index