{ [B:Type]. [x:B]. [f:A:Type. (B  A  B)].
    (PolyAccumComb(B;f;x)  CombinatorDef) }

{ Proof }



Definitions occuring in Statement :  PolyAccumComb: PolyAccumComb(B;f;x) combinator-def: CombinatorDef uall: [x:A]. B[x] member: t  T isect: x:A. B[x] function: x:A  B[x] universe: Type
Definitions :  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} filter: filter(P;l) es-E-interface: E(X) sq_type: SQType(T) IdLnk: IdLnk Id: Id rationals: append: as @ bs locl: locl(a) Knd: Knd false: False lt_int: i <z j le_int: i z j limited-type: LimitedType pair: <a, b> bfalse: ff btrue: tt eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit permutation: permutation(T;L1;L2) list: type List so_apply: x[s] implies: P  Q union: left + right or: P  Q guard: {T} l_member: (x  l) assert: b fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) quotient: x,y:A//B[x; y] apply: f a natural_number: $n real: grp_car: |g| int: nat: empty-bag: {} single-bag: {x} ifthenelse: if b then t else f fi  bag-only: only(bs) eq_int: (i = j) bag-size: bag-size(bs) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) bag: bag(T) void: Void subtype: S  T uimplies: b supposing a subtype_rel: A r B label: ...$L... t prop: true: True set: {x:A| B[x]}  lambda: x.A[x] so_lambda: x.t[x] so_lambda: x y.t[x; y] all: x:A. B[x] RecComb1: RecComb1(T.P[T];T.F[T];v,s.H[v; s]) bool: function: x:A  B[x] combinator-def: CombinatorDef PolyAccumComb: PolyAccumComb(B;f;x) universe: Type axiom: Ax member: t  T equal: s = t uall: [x:A]. B[x] isect: x:A. B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  Complete: Error :Complete,  Try: Error :Try,  RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold
Lemmas :  bag_wf true_wf member_wf RecComb1_wf ifthenelse_wf eq_int_wf bag-size_wf nat_wf single-bag_wf subtype_rel_wf empty-bag_wf permutation_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int assert_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf bag-only_wf

\mforall{}[B:Type].  \mforall{}[x:B].  \mforall{}[f:\mcap{}A:Type.  (B  {}\mrightarrow{}  A  {}\mrightarrow{}  B)].    (PolyAccumComb(B;f;x)  \mmember{}  CombinatorDef)


Date html generated: 2011_08_17-PM-06_27_00
Last ObjectModification: 2011_06_18-AM-11_49_58

Home Index