{ DisjointUnionComb()  CombinatorDef }

{ Proof }



Definitions occuring in Statement :  DisjointUnionComb: DisjointUnionComb() combinator-def: CombinatorDef member: t  T
Definitions :  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} void: Void IdLnk: IdLnk Id: Id rationals: append: as @ bs locl: locl(a) Knd: Knd false: False lt_int: i <z j le_int: i z j limited-type: LimitedType bfalse: ff btrue: tt eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit permutation: permutation(T;L1;L2) list: type List so_apply: x[s] implies: P  Q or: P  Q guard: {T} l_member: (x  l) assert: b apply: f a bool: combinator-def: CombinatorDef strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) fpf: a:A fp-B[a] subtype_rel: A r B product: x:A  B[x] pair: <a, b> eclass: EClass(A[eo; e]) quotient: x,y:A//B[x; y] uimplies: b supposing a natural_number: $n real: grp_car: |g| subtype: S  T int: nat: ifthenelse: if b then t else f fi  empty-bag: {} inr: inr x  single-bag: {x} inl: inl x  bag-only: only(bs) eq_int: (i = j) bag-size: bag-size(bs) bag: bag(T) union: left + right prop: DisjointUnionComb: DisjointUnionComb() SimpleComb2: SimpleComb2(T1.P1[T1];T2.P2[T2];T1,T2.F[T1; T2];a,b.H[a; b]) all: x:A. B[x] function: x:A  B[x] so_lambda: x.t[x] uall: [x:A]. B[x] isect: x:A. B[x] so_lambda: x y.t[x; y] equal: s = t member: t  T true: True universe: Type lambda: x.A[x] set: {x:A| B[x]}  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  true_wf SimpleComb2_wf subtype_rel_wf bag_wf member_wf bag-size_wf bag-only_wf single-bag_wf nat_wf eq_int_wf ifthenelse_wf empty-bag_wf permutation_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int assert_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf

DisjointUnionComb()  \mmember{}  CombinatorDef


Date html generated: 2011_08_17-PM-06_27_54
Last ObjectModification: 2011_01_20-AM-00_38_50

Home Index