{ [x:Id]. has-value(x) }

{ Proof }



Definitions occuring in Statement :  Id: Id uall: [x:A]. B[x] has-value: has-value(a)
Definitions :  atom: Atom rec: rec(x.A[x]) value-type: value-type(T) tag-by: zT rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 bag: Error :bag,  list: type List top: Top true: True bool: universe: Type void: Void infinitesmal: Infinitesmal nat: qle: r  s spread: spread def union: left + right ifthenelse: if b then t else f fi  set: {x:A| B[x]}  quotient: x,y:A//B[x; y] rationals: tunion: x:A.B[x] b-union: A  B real: has-valueall: has-valueall(a) so_lambda: x.t[x] member: t  T has-value: has-value(a) callbyvalue: callbyvalue int: subtype_rel: A r B less_than: a < b all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a isect: x:A. B[x] ge: i  j  le: A  B not: A Id: Id atom: Atom$n equal: s = t strong-subtype: strong-subtype(A;B) MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  ifthenelse_wf nat_wf rationals_wf infinitesmal_wf qle_wf tunion_wf bool_wf member_wf subtype_rel_wf Id_wf real_wf rational-is-real real-has-value uall_wf b-union_wf value-type_wf atom2-value-type

\mforall{}[x:Id].  has-value(x)


Date html generated: 2011_08_10-AM-07_43_26
Last ObjectModification: 2011_06_18-AM-08_09_55

Home Index