Nuprl Lemma : ballot-max_wf

[b1,b2:ballot-id()].  (ballot-max(b1;b2)  ballot-id())


Proof not projected




Definitions occuring in Statement :  ballot-max: ballot-max(b1;b2) ballot-id: ballot-id() uall: [x:A]. B[x] member: t  T
Definitions :  limited-type: LimitedType universe: Type prop: bfalse: ff btrue: tt uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q ballot-less: ballot-less(b1;b2) assert: b bnot: b int: unit: Unit union: left + right implies: P  Q bool: function: x:A  B[x] ballot-max: ballot-max(b1;b2) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t member: t  T ballot-id: ballot-id() all: x:A. B[x]
Lemmas :  ballot-id_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot ballot-less_wf bool_wf bnot_wf not_wf assert_wf

\mforall{}[b1,b2:ballot-id()].    (ballot-max(b1;b2)  \mmember{}  ballot-id())


Date html generated: 2011_10_20-PM-04_16_35
Last ObjectModification: 2011_01_25-AM-00_41_17

Home Index