{ [A,C:Type]. [n:]. [B:n  Type]. [P:C  ].
  [F:k:n  B[k]  C  C]. [L:A List]. [ds:k:n  dataflow(A;B[k])].
  [s:C].
    (data-stream(better-feedback-dataflow(n;ds;F;s;x.P[x]);L)
    = data-stream(feedback-dataflow(ds;
                                    F;s;x.P[x]);L)) }

{ Proof }



Definitions occuring in Statement :  better-feedback-dataflow: better-feedback-dataflow(n;ds;F;s;x.P[x]) feedback-dataflow: feedback-dataflow data-stream: data-stream(P;L) dataflow: dataflow(A;B) bool: int_seg: {i..j} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] list: type List natural_number: $n universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] so_apply: x[s] member: t  T all: x:A. B[x] top: Top subtype: S  T better-feedback-dataflow: better-feedback-dataflow(n;ds;F;s;x.P[x]) feedback-dataflow: feedback-dataflow pi2: snd(t) let: let implies: P  Q so_lambda: x.t[x] prop: and: P  Q pi1: fst(t) so_lambda: x y.t[x; y] squash: T true: True rev_implies: P  Q iff: P  Q nat: so_apply: x[s1;s2]
Lemmas :  int_seg_wf dataflow_wf bool_wf nat_wf top_wf data-stream-cons eval-parallel-dataflow-property eval-parallel-dataflow_wf pi1_wf_top dataflow-ap_wf dataflow-out_wf nat_properties pi2_wf rec-dataflow_wf squash_wf true_wf ifthenelse_wf data-stream_wf feedback-dataflow_wf

\mforall{}[A,C:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[B:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[P:C  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[F:k:\mBbbN{}n  {}\mrightarrow{}  B[k]  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[L:A  List].
\mforall{}[ds:k:\mBbbN{}n  {}\mrightarrow{}  dataflow(A;B[k])].  \mforall{}[s:C].
    (data-stream(better-feedback-dataflow(n;ds;F;s;x.P[x]);L)
    =  data-stream(feedback-dataflow(ds;
                                                                    F;s;x.P[x]);L))


Date html generated: 2011_08_10-AM-08_18_52
Last ObjectModification: 2011_06_18-AM-08_31_51

Home Index